Skip to content

🤖 Détection de pneumonie à partir d'image de radio.

Notifications You must be signed in to change notification settings

ycncy/Zoidberg2.0

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

40 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ZOIDBERG 2.0

Computer Aided Diagnosis

  1. Setup and Data Preparation

    • Install necessary libraries
    • A Jupyter Notebook for the project
  2. Data Loading and Exploration

    • Data Loading:
      • Load the datasets using installed libraries (ex: opencv-python)
      • Display the structure and some sample to understand the data format
    • Data Exploration:
      • Visualize some X-Ray images
      • Check the distribution of classes (pneumonia vs no-pneumonia)
      • Analyze basic statistics (mean, median, standard deviation) of image pixel values
  3. Data Preprocessing

    • Image Preprocessing:

      • Resize image to a standard size (ex: 224 x 224px)
      • Normalize pixel values to the range [0,1]
      • Perform data augmentation (rotation, scaling, flipping) to increase the diversity of the training data
    • Label encoding:

      • Encode the labels into numerical values if necessary (ex: no-pneumonia = 0; pneumonia = 1)
  4. Splitting the Data

    • Train-Validation-Test split:
  5. Model Selection and Training

  6. Hyperparameter Tuning

  7. Model Evaluation

  8. Feature Engineering and Dimensionality Reduction

  9. Final Model Training and Testing

  10. Visualization and Interpretation

  11. Documentation and Delivery