-
Setup and Data Preparation
- Install necessary libraries
- A Jupyter Notebook for the project
-
Data Loading and Exploration
- Data Loading:
- Load the datasets using installed libraries (ex: opencv-python)
- Display the structure and some sample to understand the data format
- Data Exploration:
- Visualize some X-Ray images
- Check the distribution of classes (pneumonia vs no-pneumonia)
- Analyze basic statistics (mean, median, standard deviation) of image pixel values
- Data Loading:
-
Data Preprocessing
-
Image Preprocessing:
- Resize image to a standard size (ex: 224 x 224px)
- Normalize pixel values to the range [0,1]
- Perform data augmentation (rotation, scaling, flipping) to increase the diversity of the training data
-
Label encoding:
- Encode the labels into numerical values if necessary (ex: no-pneumonia = 0; pneumonia = 1)
-
-
Splitting the Data
- Train-Validation-Test split:
-
Hyperparameter Tuning
-
Model Evaluation
-
Feature Engineering and Dimensionality Reduction
-
Final Model Training and Testing
-
Visualization and Interpretation
-
Documentation and Delivery
-
Notifications
You must be signed in to change notification settings - Fork 0
ycncy/Zoidberg2.0
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
Repository files navigation
About
🤖 Détection de pneumonie à partir d'image de radio.
Topics
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published