AI-powered macroeconomic news analysis with industry-specific sentiment models and automated trading simulation.
# Install dependencies
pip install -r requirements.txt
# Run terminal application
python terminal_app.py
# or
./rain.shAll documentation is in the docs/ folder:
- START_HERE.md - Training quickstart guide
- INDUSTRY_ANALYSIS_ROADMAP.md - 3-month implementation plan
- PROJECT_STRUCTURE.md - Complete codebase layout
- PHASE4_COMPLETE.md - Advanced features
- DATABASE_GUIDE.md - Database setup
- DOCKER_GUIDE.md - Docker deployment
- Interactive menu system
- Real-time news analysis
- Trade simulation & PnL tracking
- Performance metrics dashboard
- Tech: Bullish/Bearish/Neutral
- Finance: Hawkish/Dovish/Neutral
- Medicine: Breakthrough/Setback/Neutral
- Real Estate: Expansionary/Contractionary/Neutral
- Defense: Escalation/De-escalation/Neutral
- Politics: Progressive/Conservative/Neutral
- Fine-tune models on your data
- Sector-specific sentiment labels
- Interactive labeling tool
- 600+ stocks tracked (top 100 per sector)
- Multiple strategies (Sentiment Fusion, Composite)
- Risk management (position limits, drawdown protection)
- Technical indicators (RSI, MACD, Bollinger Bands)
- Performance metrics (Sharpe, Sortino, Max Drawdown)
make run # Run terminal application
make train-prepare # Prepare training data
make train-tech # Train Tech sector model
make build # Build Docker image
make up # Start with Docker
make test-strategy # Test trading strategies
make test-risk # Test risk managementRAIN/
βββ terminal_app.py # Main application
βββ train_tech_model.py # Model training
βββ config/ # Sector configurations
βββ training/ # FinBERT training system
βββ scripts/ # Data pipeline scripts
βββ trading/ # Trading simulation
βββ strategies/ # Trading strategies
βββ risk/ # Risk management
βββ indicators/ # Technical indicators
βββ models/ # ML models
βββ utils/ # Utilities (cache, retry, metrics)
βββ docs/ # π All documentation
-
Clone & Install
pip install -r requirements.txt python -m spacy download en_core_web_sm
-
Configure API Keys
cp .env.example .env # Add your API keys to .env -
Run
python terminal_app.py
- NLP: FinBERT, Transformers, spaCy
- Trading: Custom strategies, risk management
- Data: NewsAPI, Alpha Vantage
- Cache: Redis
- UI: Rich (terminal)
- Container: Docker
See docs/START_HERE.md for complete training guide.
# 1. Prepare data
python scripts/prepare_training_data.py
# 2. Label interactively
python start_labeling.py
# 3. Train model
python train_tech_model.py- Redis Caching: 70-80% API call reduction
- Sentiment Accuracy: 80%+ with custom training
- Trading Strategies: Multiple signal types with ensemble voting
- Risk Management: Automated position sizing & stop loss
make build && make up
# or
docker-compose up -dMIT
- Fork the repository
- Create feature branch
- Make changes
- Submit pull request
Documentation: See docs/ folder
Issues: Report on GitHub
Status: β
Production ready