Skip to content

yaolinli/CapEnrich

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CapEnrich

This is the official PyTorch implementation for the WWW 2023 paper:

CapEnrich: Enriching Caption Semantics for Web Images via Cross-modal Pre-trained Knowledge

We provide the codes of our plug-and-play framework CapEnrich taking VinVL (Oscar+) as the Vision-Language-Pretraining(VLP) backbone. Our codes are built on the VinVL repo.

Requirements

First install the requirements that VinVL needs referring to its INSTALL.md.

Then install other requirements and the CLIP:

$ conda activate oscar
$ pip install ftfy regex tqdm spacy
$ pip install git+https://github.com/openai/CLIP.git

Install the coco_caption evaluation codes:

pip install git+https://github.com/jmhessel/pycocoevalcap.git

Download

Download the image features, text annotations of MSCOCO dataset and the released pre-trained model of VinVL available at its repo page.

The raw images, region features, annotations of MSCOCO datasets should be put in ./oscar/datasets/

The official released VinVL_base model (after CE and RL two-stage fine-tuning on MSCOCO dataset) should be put in ./oscar/pretrained_model/

Automatic Data-building

Construct new-format data like "generic caption, details" on the MSCOCO dataset:

  1. Extract scene graph of all annotations using the tool:
# install scene graph parser tool 
pip install SceneGraphParser
python -m spacy download en
# get scene graphs
cd process_data/
python get_scenegraphs.py
  1. Aggregate multiple annotations to a more detailed one based on the scene graphs
python newdata_construct.py

Training with Learnable Prompts

Refer to run.sh and the specific commands are as followings:

cd ..
python setup.py build develop
cd oscar

CUDA_VISIBLE_DEVICES=3 python run_captioning.py \
    --model_name_or_path ./pretrained_model/coco_captioning_base_scst/checkpoint-15-66405 \
    --do_train \
    --do_lower_case \
    --add_od_labels \
    --learning_rate 3e-4 \
    --per_gpu_train_batch_size 48 \
    --num_train_epochs 30 \
    --tie_weights \
    --freeze_embedding \
    --label_smoothing 0.1 \
    --drop_worst_ratio 0.2 \
    --drop_worst_after 20000 \
    --caption_file './datasets/{}_prefix_prompts.json' \
    --data_dir './datasets/coco_caption' \
    --evaluate_during_training \
    --save_epochs 1 \
    --n_ctx 2 \       
    --ctx_init "" \  
    --output_dir experiments/output_3e-4_nctx2_random

the number of prompts can be set by --n_ctx such as 2,4,6,8, default is 2.

the initialization of prompts can be set by --ctx_init, 1) random initialization from a zero-mean Gaussian distribution --ctx_init '' or 2) initialization from specified word embeddings, such as --ctx_init 'the man'

Inference

Refer to inference.sh and set the checkpoint path --eval_model_dir

# generate more details on test set
CUDA_VISIBLE_DEVICES=4 python end_uni_predict.py \
    --do_predict \
    --predict_yaml test.yaml \
    --per_gpu_eval_batch_size 1 \
    --num_beams 5 \
    --max_gen_length 40 \
    --data_dir ./datasets/coco_caption \
    --output_dir eval_results \
    --output_file output_3e-4_nctx2_random.json \
    --eval_model_dir experiments/output_3e-4_nctx2_random/best_checkpoint \
    --caption_file './eval_results/vinvl_result.json'

# aggregating multiple generated captions
cd process_data/
python post_process.py

The generated captions are available at ./oscar/eval_results/

Evaluation

Run the accuracy captioning metrics including SPICE, CLIPScore and Ref-CLIPScore as followings:

cd metrics/clipscore
python eval.py  --testfile your_test_file  --annofile your_gt_file

An example is:

python eval.py  --testfile '../../eval_results/vinvl_result.json'  --annofile  '../../datasets/coco_caption/test_caption_coco_format.json' 

We also provide the codes to calculate the refined CLIP R@K score on the Hard Retrieval Pool.

cd metrics/clip_Self_retrieve
python coco_process_t2i_sim.py --testfile ../../eval_results/vinvl_result.json  --retrieve_set hard

Citation

@inproceedings{Yao2022CapEnrichEC,
  title={CapEnrich: Enriching Caption Semantics for Web Images via Cross-modal Pre-trained Knowledge},
  author={Linli Yao and Weijing Chen and Qin Jin},
  booktitle={{TheWebConf}},
  year = {2023}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published