Skip to content

Position Detection and Direction Prediction for Arbitrary-Oriented Ships via Multiscale Rotation Region Convolutional Neural Network

Notifications You must be signed in to change notification settings

yangxue0827/R2CNN_HEAD_FPN_Tensorflow

Repository files navigation

R2CNN_HEAD (The paper is under review.): Position Detection and Direction Prediction for Arbitrary-Oriented Ships via Multiscale Rotation Region Convolutional Neural Network

Recommend improved code: https://github.com/DetectionTeamUCAS

A Tensorflow implementation of FPN or R2CNN detection framework based on FPN.
You can refer to the papers R2CNN Rotational Region CNN for Orientation Robust Scene Text Detection or Feature Pyramid Networks for Object Detection
Other rotation detection method reference R-DFPN, RRPN and R2CNN

If useful to you, please star to support my work. Thanks.

Citation

Some relevant achievements based on this code.

@article{[yang2018position](https://ieeexplore.ieee.org/document/8464244),
	title={Position Detection and Direction Prediction for Arbitrary-Oriented Ships via Multitask Rotation Region Convolutional Neural Network},
	author={Yang, Xue and Sun, Hao and Sun, Xian and  Yan, Menglong and Guo, Zhi and Fu, Kun},
	journal={IEEE Access},
	volume={6},
	pages={50839-50849},
	year={2018},
	publisher={IEEE}
}

@article{[yang2018r-dfpn](http://www.mdpi.com/2072-4292/10/1/132),
	title={Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks},
	author={Yang, Xue and Sun, Hao and Fu, Kun and Yang, Jirui and Sun, Xian and Yan, Menglong and Guo, Zhi},
	journal={Remote Sensing},
	volume={10},
	number={1},
	pages={132},
	year={2018},
	publisher={Multidisciplinary Digital Publishing Institute}
}

Configuration Environment

ubuntu(Encoding problems may occur on windows) + python2 + tensorflow1.2 + cv2 + cuda8.0 + GeForce GTX 1080
If you want to use cpu, you need to modify the parameters of NMS and IOU functions use_gpu = False in cfgs.py
You can also use docker environment, command: docker pull yangxue2docker/tensorflow3_gpu_cv2_sshd:v1.0

Installation

Clone the repository

git clone https://github.com/yangxue0827/R2CNN_HEAD_FPN_Tensorflow.git    

Make tfrecord

The data is VOC format, reference here
data path format ($R2CNN_HEAD_ROOT/data/io/divide_data.py)

├── VOCdevkit
│   ├── VOCdevkit_train
│       ├── Annotation
│       ├── JPEGImages
│    ├── VOCdevkit_test
│       ├── Annotation
│       ├── JPEGImages

Clone the repository

cd $R2CNN_HEAD_ROOT/data/io/  
python convert_data_to_tfrecord.py --VOC_dir='***/VOCdevkit/VOCdevkit_train/' --save_name='train' --img_format='.jpg' --dataset='ship'
     

Compile

cd $PATH_ROOT/libs/box_utils/
python setup.py build_ext --inplace

Demo

1、Unzip the weight $R2CNN_HEAD_ROOT/output/res101_trained_weights/*.rar
2、put images in $R2CNN_HEAD_ROOT/tools/inference_image
3、Configure parameters in $R2CNN_HEAD_ROOT/libs/configs/cfgs.py and modify the project's root directory
4、

cd $R2CNN_HEAD_ROOT/tools      

5、image slice

python inference.py   

6、big image

cd $FPN_ROOT/tools
python demo.py --src_folder=.\demo_src --des_folder=.\demo_des         

Train

1、Modify $R2CNN_HEAD_ROOT/libs/lable_name_dict/***_dict.py, corresponding to the number of categories in the configuration file
2、download pretrain weight(resnet_v1_101_2016_08_28.tar.gz or resnet_v1_50_2016_08_28.tar.gz) from here, then extract to folder $R2CNN_HEAD_ROOT/data/pretrained_weights
3、

cd $R2CNN_HEAD_ROOT/tools  
python train.py      

Test tfrecord

cd $R2CNN_HEAD_ROOT/tools   
python test.py      

eval(Not recommended, Please refer here)

cd $R2CNN_HEAD_ROOT/tools   
python eval.py    

Summary

tensorboard --logdir=$R2CNN_HEAD_ROOT/output/res101_summary/ 

01 02 03

Graph

04

Test results

11
12

13
14

15
16

17
18

About

Position Detection and Direction Prediction for Arbitrary-Oriented Ships via Multiscale Rotation Region Convolutional Neural Network

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published