Update: Please go to https://github.com/HKUDS/AdaGCL to view the latest relevant source code and datasets of AdaGCL, this repository is no longer valid.
This is the PyTorch implementation for AdaptiveGCL proposed in the paper Adaptive Graph Contrastive Learning for Recommendation.
We develop our codes in the following environment:
- python==3.9.13
- numpy==1.23.1
- torch==1.11.0
- scipy==1.9.1
| Dataset | # User | # Item | # Interaction | Interaction Density |
|---|---|---|---|---|
| Last.FM | 1,892 | 17,632 | 92,834 | 2.8 × |
| Yelp | 42,712 | 26,822 | 182,357 | 1.6 × |
| BeerAdvocate | 10,456 | 13,845 | 1,381,094 | 9.5 × |
- Last.FM
python Main.py --data lastfm --eps 1e-3 --gamma -0.95- Yelp
python Main.py --data yelp --eps 1e-3 --ssl_reg 1 --ib_reg 1e-2- BeerAdvocate
python Main.py --data beer --ib_reg 1 --eps 1e-3 --lambda0 1e-2