Metagene Profiling Analysis and Visualization
This tool allows you to analyze metagene, the distribution of genomic features relative to gene regions (5'UTR, CDS, 3'UTR) and create publication-ready metagene profile plots.
Install metagene using pip:
pip install metagene
minimal python version requirement: 3.12
Basic metagene analysis using a built-in reference:
# Using built-in human genome reference (GRCh38)
metagene -i sites.tsv.gz -r GRCh38 --with-header -m 1,2,3 -w 5 \
-o output.tsv -s scores.tsv -p plot.png
Using a custom GTF file:
# Using custom GTF annotation
metagene -i sites.bed -g custom.gtf.gz -m 1,2,3 -w 5 \
-o output.tsv -s scores.tsv -p plot.png
from metagene import (
load_sites, load_reference, map_to_transcripts,
normalize_positions, plot_profile
)
# Load your genomic sites
sites_df = load_sites("sites.tsv.gz", with_header=True, meta_col_index=[0, 1, 2])
# Load reference genome annotation
reference_df = load_reference("GRCh38") # or load_gtf("custom.gtf.gz")
# Perform metagene analysis
annotated_df = map_to_transcripts(sites_df, reference_df)
gene_bins, gene_stats, gene_splits = normalize_positions(
annotated_df, split_strategy="median", bin_number=100
)
# Generate plot
plot_profile(gene_bins, gene_splits, "metagene_plot.png")
print(f"Analyzed {gene_bins['count'].sum()} sites")
print(f"Gene splits - 5'UTR: {gene_splits[0]:.3f}, CDS: {gene_splits[1]:.3f}, 3'UTR: {gene_splits[2]:.3f}")
print(f"Gene statistics - 5'UTR: {gene_stats['5UTR']}, CDS: {gene_stats['CDS']}, 3'UTR: {gene_stats['3UTR']}")
ref pos strand score pvalue
chr1 1000000 + 0.85 0.001
chr1 2000000 - 0.72 0.005
chr1 999999 1000000 score1 0.85 +
chr1 1999999 2000000 score2 0.72 -
- Use
-m/--meta-columns
to specify coordinate columns (1-based indexing) - Use
-w/--weight-columns
to specify score/weight columns - Use
-H/--with-header
if your file has a header line
Metagene includes pre-processed gene annotations for major model organisms:
Species | Assembly | Reference |
---|---|---|
Human | GRCh38/hg38 | GRCh38 , hg38 |
GRCh37/hg19 | GRCh37 , hg19 |
|
Mouse | GRCm39/mm39 | GRCm39 , mm39 |
GRCm38/mm10 | GRCm38 , mm10 |
|
mm9/NCBIM37 | mm9 , NCBIM37 |
|
Arabidopsis | TAIR10 | TAIR10 |
Rice | IRGSP-1.0 | IRGSP-1.0 |
Model Organisms | Various | dm6 , ce11 , WBcel235 , sacCer3 , etc. |
List all available references:
metagene --list
This will show all 23+ available references organized by species:
Human:
GRCh37 - Human genome GRCh37 (Ensembl release 75)
GRCh38 - Human genome GRCh38 (Ensembl release 110)
hg19 - Human genome hg19 (UCSC 2021)
hg38 - Human genome hg38 (UCSC 2022)
Mouse:
GRCm38 - Mouse genome GRCm38 (Ensembl release 102)
GRCm39 - Mouse genome GRCm39 (Ensembl release 110)
mm10 - Mouse genome mm10 (UCSC 2021)
mm39 - Mouse genome mm39 (UCSC 2024)
mm9 - Mouse genome mm9 (UCSC 2020)
... and more
Download a specific reference:
metagene --download GRCh38
Download all references (requires ~10GB disk space):
metagene --download all
Usage: metagene [OPTIONS]
Run metagene analysis on genomic sites.
Options:
--version Show the version and exit.
-i, --input PATH Input file path (BED, GTF, TSV or CSV, etc.)
-o, --output PATH Output file path (TSV, CSV)
-s, --output-score PATH Output file for binned score statistics
-p, --output-figure PATH Output file for metagene plot
-r, --reference TEXT Built-in reference genome to use (e.g.,
GRCh38, GRCm39)
-g, --gtf PATH GTF/GFF file path for custom reference
--region Region to analyze (default: all)
-b, --bins INTEGER Number of bins for analysis (default: 100)
-H, --with-header Input file has header line
-S, --separator TEXT Separator for input file (default: tab)
-m, --meta-columns TEXT Input column indices (1-based) for genomic
coordinates. The columns should contain
Chromosome,Start,End,Strand or
Chromosome,Site,Strand
-w, --weight-columns TEXT Input column indices (1-based) for
weight/score values
-n, --weight-names TEXT Names for weight columns
--score-transform
Transform to apply to scores (default: none)
--normalize Normalize scores by transcript length
--list List all available built-in references and
exit
--download TEXT Download a specific reference (e.g., GRCh38)
or 'all' for all references
-h, --help Show this message and exit.
load_sites(file, with_header=False, meta_col_index=[0,1,2])
- Load genomic sitesload_reference(name)
- Load built-in reference genomeload_gtf(file)
- Load custom GTF annotationmap_to_transcripts(sites, reference)
- Annotate sites with gene informationnormalize_positions(annotated_sites, strategy="median")
- Normalize to relative positionsplot_profile(data, gene_splits, output_file)
- Generate metagene plot
The plot shows the distribution of genomic sites across normalized gene regions:
- 5'UTR (0.0 - first split): 5' untranslated region
- CDS (first split - second split): Coding sequence
- 3'UTR (second split - 1.0): 3' untranslated region
- How to 100k sites on human genome in less than 10s?
- The core function should be move into variant