Skip to content
/ HCA Public
forked from YangJAT/HCA

Hierarchical Cell Annotation

Notifications You must be signed in to change notification settings

xxywmt/HCA

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HCA (Hierarchical Cell Annotation)

图片

This tutorial shows how to use HCA R package for single-cell RNA data analysis, including immune cell annotation, tumor cell annotation, and data integration.


Note

Dependency issues

This package has several dependencies with version constraints:

  1. Seurat: version <5 (excluding 4.9); 4.3 recommended
  2. Matrix: version = 1.5-3
  3. scGate: version = 1.2.0
  4. future: version = 1.31.0
# scGate
library(remotes)
remotes::install_github("carmonalab/scGate", ref = "v1.2.0")

# Matrix
# download Matrix_1.5-3.tar.gz from https://cran.r-project.org/src/contrib/Archive/Matrix/
install.packages("Matrix_1.5-3 .tar.gz", repos = NULL, type = "source") # Install from a local directory

# future
# download future_1.31.0.tar.gz from https://cran.r-project.org/src/contrib/Archive/future/
install.packages("future_1.31.0.tar.gz", repos = NULL, type = "source") # Install from a local directory


# install our package
devtools::install_github('Liuzhicheng048/iCNA')
devtools::install_github('YangJAT/HCA')

Memory issues

We recommend utilizing a high-memory server for optimal performance.


Loading Required R Packages

library(HCA)
library(viridis)
library(Seurat)
library(iCNA)
library(stringr)
library(scGate)
library(future)

load the data:

scGate_DB <- readRDS("data/scGate_DB.rds")
datafilt <- readRDS("data/sc_datafilt.rds")

"datafilt" is a Seurat object that requires only basic cell filtering and includes a column labeled "sample" to define the cell-to-sample correspondence, with no need for additional processing.


Celltype annotation

Annotating Immune Cells

non_epi <- c("EPCAM-", "CDH1-", "KRT7-", "KRT18-", "KRT19-", "ALB-", "AFP-") # for human
non_epi <- c("Krt5-", "Krt14-", "Krt6a-", "Dsp-", "Krt17-", "Lgals7-") # for mouse

dataimmu <- anno_immune(datafilt,
                        scGate_DB = scGate_DB,
                        organism = "human", # or mouse
                        non_epi = non_epi,
                        min_cell = 100,
                        ncore = 1) # Multi-core functionality is not available on Windows

Annotating Tumor Cells

Note 1: This step is optional. If your data has undergone CD45 sorting, then you only need to run immune cell annotation, and data integration can also be skipped.
Note 2: The input Seurat object must include a column labeled "sample" to define the cell-to-sample correspondence.

datacanc <- anno_tumor(datafilt,
                       scGate_DB = scGate_DB, 
                       organism = "human", # or mouse
                       thres_sig = 0.005, # Adjust this threshold based on scatter_plot.png
                       thres_cor = 0.5, # Adjust this threshold based on scatter_plot.png
                       ncore = 1, # Multi-core functionality is not available on Windows
                       isFilter = TRUE)

If the code runs successfully, an image (inferCNV/scatter_plot.png) will be generated in the current path. You can select the threshold range based on the scatter plot positions in the image.

图片


Data Integration

dataintg <- integrate(dataimmu, datacanc,
                      min_tumor = 50,
                      rm_doublet = FALSE,
                      prop_doublet = 0.075)

# If you skipped the annotation of tumor cells, please run
# dataintg <- dataimmu

After running, the Seurat object will contain a column labeled "celltype_sig2," representing the annotation results.


Further filtering

source("data/Other functions.R")

# clustering

dataintg <- autocluster(dataintg, nfeatures = 2000,
                        ndim = 15, neigh = 20,
                        dist = 1, res = 3) # Set a higher resolution (res) to capture more clusters

# celltype visualization

dimplot_new(dataintg,
            reduction = "umap",
            pt.size = 0.2, label = T,
            group.by = c("celltype_sig2"))

# High-resolution clustering visualization

dimplot_new(dataintg,
            reduction = "umap",
            pt.size = 0.5, label = T,
            group.by = c("seurat_clusters"))

Simultaneously review the cell type annotations and Seurat clustering results, removing clusters that encompass cells from divergent lineages (e.g., myeloid and lymphoid lineages within a single cluster) or clusters with atypical spatial positioning on the UMAP plot (e.g., T cell subsets positioned in close proximity to myeloid cells).

图片

# exclude any problematic clusters

select = c("31","35","39","40","51")
dataintg <- dataintg[,!(dataintg$seurat_clusters %in% select)]

# re-analyze

dataintg <- autocluster(dataintg, nfeatures = 2000,
                        ndim = 15, neigh = 20,
                        dist = 1, res = 3)

dimplot_new(dataintg,
            reduction = "umap",
            pt.size = 0.2, label = T,
            group.by = c("celltype_sig2"))

图片


Visualization

source("data/Other functions.R")

# dotplot visualization (with default gene set)

name = "marker_dotplot.pdf"
dotplot_marker(dataintg,
               group.by = "celltype_sig2",
               marker = NULL,
               species = "human", # or mouse
               output = name,
               height = 6)

# dotplot visualization (manually selected gene set)

Tcell = c("Cd3d", "Cd3e")
CD8T = c("Cd8a", "Cd8b1")
gene_list <- list(name1 = Tcell,
                  name2 = CD8T)

name = "marker_dotplot.pdf"
dotplot_marker(dataintg,
               group.by = "celltype_sig2",
               marker = gene_list,
               species = NULL,
               output = name,
               height = 6)

图片

This visualization specifically delineates the comparison between the control and experimental groups

source("data/Other functions.R")

# UMAP density plot

prop_density(datafilt = datafilt,
             group = "group", # grouping information
             coord = "umap")

# Back-to-back plot

prop_back2back(datafilt = datafilt,
               group = "group", # grouping information
               cluster = "seurat_clusters",
               order = TRUE)

# Sample-level proportional distribution difference

input <- data.frame(table(dataimmu$sample, dataimmu$celltype_sig2))
prop_plot_hca(input, rotate = 45, decreasing = T, species = "human")

图片

More analysis and visualization capabilities will be introduced in upcoming updates.


How to cite

The iCNA package is essentially a more installable version of the infercna package (see https://github.com/jlaffy/infercna), created to address the challenges often encountered with installing infercna across different environments. If you use our package, please cite both our study (https://doi.org/10.1016/j.ccell.2024.10.008) and the related article for the infercna package (https://doi.org/10.1016/j.cell.2019.06.024).

About

Hierarchical Cell Annotation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 100.0%