Skip to content

xre22zax/Linear-regression-website-sample

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 

Repository files navigation

Linear Regression Analysis of Website Usage Time

This repository contains Python code that explores factors influencing time spent on a website using linear regression.

Key Findings

  • Age and time spent on the website are positively correlated.
  • Chrome users tend to spend longer on the website than Safari users.

Files

  • website.csv: Contains data on user age, browser type, and time spent on the website (in seconds).
  • linear_regression.py: Python script for analysis, including:
    • Loading and exploring data
    • Building and fitting linear regression models
    • Visualizing results
    • Making predictions

Dependencies

  • pandas
  • numpy
  • matplotlib.pyplot
  • statsmodels.api

Usage

  1. Install dependencies: pip install pandas numpy matplotlib statsmodels
  2. Run the script: python linear_regression.py

Key Code Snippets

# Load data
website = pd.read_csv('website.csv')

# Model 1: Time vs. Age
model = sm.OLS.from_formula('time_seconds ~ age', website)
results = model.fit()

# Model 2: Time vs. Browser
model = sm.OLS.from_formula('time_seconds ~ browser', website)
results = model.fit()

# Prediction for 40-year-old
pred40 = results.params[0] + results.params[1]*40

Contributing

Feel free to submit issues or pull requests for improvements or additions.


Author

Reza Sadeghi