Skip to content

Commit

Permalink
[ CI/Build ] LM Eval Harness Based CI Testing (vllm-project#5838)
Browse files Browse the repository at this point in the history
Co-authored-by: Robert Shaw <rshaw@neuralmagic>
  • Loading branch information
2 people authored and jimpang committed Jul 8, 2024
1 parent 5871f39 commit eb4a5cc
Show file tree
Hide file tree
Showing 11 changed files with 274 additions and 0 deletions.
11 changes: 11 additions & 0 deletions .buildkite/lm-eval-harness/configs/Meta-Llama-3-70B-Instruct.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-70B-Instruct -b 32 -l 250 -f 5
model_name: "meta-llama/Meta-Llama-3-70B-Instruct"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.892
- name: "exact_match,flexible-extract"
value: 0.892
limit: 250
num_fewshot: 5
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m neuralmagic/Meta-Llama-3-8B-Instruct-FP8 -b 32 -l 250 -f 5 -t 1
model_name: "neuralmagic/Meta-Llama-3-8B-Instruct-FP8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.756
- name: "exact_match,flexible-extract"
value: 0.752
limit: 250
num_fewshot: 5
11 changes: 11 additions & 0 deletions .buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m meta-llama/Meta-Llama-3-8B-Instruct -b 32 -l 250 -f 5 -t 1
model_name: "meta-llama/Meta-Llama-3-8B-Instruct"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.756
- name: "exact_match,flexible-extract"
value: 0.752
limit: 250
num_fewshot: 5
11 changes: 11 additions & 0 deletions .buildkite/lm-eval-harness/configs/Mixtral-8x7B-Instruct-v0.1.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1 -b 32 -l 250 -f 5 -t 4
model_name: "mistralai/Mixtral-8x7B-Instruct-v0.1"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.616
- name: "exact_match,flexible-extract"
value: 0.632
limit: 250
num_fewshot: 5
2 changes: 2 additions & 0 deletions .buildkite/lm-eval-harness/configs/models-large.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
Meta-Llama-3-70B-Instruct.yaml
Mixtral-8x7B-Instruct-v0.1.yaml
2 changes: 2 additions & 0 deletions .buildkite/lm-eval-harness/configs/models-small.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
Meta-Llama-3-8B-Instruct.yaml
Meta-Llama-3-8B-Instruct-FP8.yaml
46 changes: 46 additions & 0 deletions .buildkite/lm-eval-harness/run-lm-eval-gsm-hf-baseline.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
#!/bin/bash
# We can use this script to compute baseline accuracy on GSM for transformers.
#
# Make sure you have lm-eval-harness installed:
# pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@9516087b81a61d0e220b22cc1b75be76de23bc10

usage() {
echo``
echo "Runs lm eval harness on GSM8k using huggingface transformers."
echo "This pathway is intended to be used to create baselines for "
echo "our automated nm-test-accuracy workflow"
echo
echo "usage: ${0} <options>"
echo
echo " -m - huggingface stub or local directory of the model"
echo " -b - batch size to run the evaluation at"
echo " -l - limit number of samples to run"
echo " -f - number of fewshot samples to use"
echo
}

while getopts "m:b:l:f:" OPT; do
case ${OPT} in
m )
MODEL="$OPTARG"
;;
b )
BATCH_SIZE="$OPTARG"
;;
l )
LIMIT="$OPTARG"
;;
f )
FEWSHOT="$OPTARG"
;;
\? )
usage
exit 1
;;
esac
done

lm_eval --model hf \
--model_args pretrained=$MODEL,parallelize=True \
--tasks gsm8k --num_fewshot $FEWSHOT --limit $LIMIT \
--batch_size $BATCH_SIZE
51 changes: 51 additions & 0 deletions .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
#!/bin/bash
# We can use this script to compute baseline accuracy on GSM for vllm.
# We use this for fp8, which HF does not support.
#
# Make sure you have lm-eval-harness installed:
# pip install lm-eval==0.4.2

usage() {
echo``
echo "Runs lm eval harness on GSM8k using huggingface transformers."
echo "This pathway is intended to be used to create baselines for "
echo "our automated nm-test-accuracy workflow"
echo
echo "usage: ${0} <options>"
echo
echo " -m - huggingface stub or local directory of the model"
echo " -b - batch size to run the evaluation at"
echo " -l - limit number of samples to run"
echo " -f - number of fewshot samples to use"
echo " -t - tensor parallel size to run at"
echo
}

while getopts "m:b:l:f:t:" OPT; do
case ${OPT} in
m )
MODEL="$OPTARG"
;;
b )
BATCH_SIZE="$OPTARG"
;;
l )
LIMIT="$OPTARG"
;;
f )
FEWSHOT="$OPTARG"
;;
t )
TP_SIZE="$OPTARG"
;;
\? )
usage
exit 1
;;
esac
done

lm_eval --model vllm \
--model_args pretrained=$MODEL,tensor_parallel_size=$TP_SIZE \
--tasks gsm8k --num_fewshot $FEWSHOT --limit $LIMIT \
--batch_size $BATCH_SIZE
59 changes: 59 additions & 0 deletions .buildkite/lm-eval-harness/run-tests.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
#!/bin/bash

usage() {
echo``
echo "Runs lm eval harness on GSM8k using vllm and compares to "
echo "precomputed baseline (measured by HF transformers.)"
echo
echo "usage: ${0} <options>"
echo
echo " -c - path to the test data config (e.g. configs/small-models.txt)"
echo " -t - tensor parallel size"
echo
}

SUCCESS=0

while getopts "c:t:" OPT; do
case ${OPT} in
c )
CONFIG="$OPTARG"
;;
t )
TP_SIZE="$OPTARG"
;;
\? )
usage
exit 1
;;
esac
done

# Parse list of configs.
IFS=$'\n' read -d '' -r -a MODEL_CONFIGS < $CONFIG

for MODEL_CONFIG in "${MODEL_CONFIGS[@]}"
do
LOCAL_SUCCESS=0

echo "=== RUNNING MODEL: $MODEL_CONFIG WITH TP SIZE: $TP_SIZE==="

export LM_EVAL_TEST_DATA_FILE=$PWD/configs/${MODEL_CONFIG}
export LM_EVAL_TP_SIZE=$TP_SIZE
pytest -s test_lm_eval_correctness.py || LOCAL_SUCCESS=$?

if [[ $LOCAL_SUCCESS == 0 ]]; then
echo "=== PASSED MODEL: ${MODEL_CONFIG} ==="
else
echo "=== FAILED MODEL: ${MODEL_CONFIG} ==="
fi

SUCCESS=$((SUCCESS + LOCAL_SUCCESS))

done

if [ "${SUCCESS}" -eq "0" ]; then
exit 0
else
exit 1
fi
54 changes: 54 additions & 0 deletions .buildkite/lm-eval-harness/test_lm_eval_correctness.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
"""
LM eval harness on model to compare vs HF baseline computed offline.
Configs are found in configs/$MODEL.yaml
* export LM_EVAL_TEST_DATA_FILE=configs/Meta-Llama-3-70B-Instruct.yaml
* export LM_EVAL_TP_SIZE=4
* pytest -s test_lm_eval_correctness.py
"""

import os
from pathlib import Path

import lm_eval
import numpy
import yaml

RTOL = 0.02
TEST_DATA_FILE = os.environ.get(
"LM_EVAL_TEST_DATA_FILE",
".buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct.yaml")

TP_SIZE = os.environ.get("LM_EVAL_TP_SIZE", 1)


def launch_lm_eval(eval_config):
model_args = f"pretrained={eval_config['model_name']}," \
f"tensor_parallel_size={TP_SIZE}"

results = lm_eval.simple_evaluate(
model="vllm",
model_args=model_args,
tasks=[task["name"] for task in eval_config["tasks"]],
num_fewshot=eval_config["num_fewshot"],
limit=eval_config["limit"],
batch_size="auto")

return results


def test_lm_eval_correctness():
eval_config = yaml.safe_load(
Path(TEST_DATA_FILE).read_text(encoding="utf-8"))

# Launch eval requests.
results = launch_lm_eval(eval_config)

# Confirm scores match ground truth.
for task in eval_config["tasks"]:
for metric in task["metrics"]:
ground_truth = metric["value"]
measured_value = results["results"][task["name"]][metric["name"]]
print(f'{task["name"]} | {metric["name"]}: '
f'ground_truth={ground_truth} | measured={measured_value}')
assert numpy.isclose(ground_truth, measured_value, rtol=RTOL)
16 changes: 16 additions & 0 deletions .buildkite/test-pipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -197,6 +197,22 @@ steps:
- pip install aiohttp
- bash run-benchmarks.sh

- label: LM Eval Small Models
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
commands:
- pip install lm-eval
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- bash ./run-tests.sh -c configs/models-small.txt -t 1

- label: LM Eval Large Models
gpu: a100
num_gpus: 4
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
commands:
- pip install lm-eval
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- bash ./run-tests.sh -c configs/models-large.txt -t 4

- label: Documentation Build
working_dir: "/vllm-workspace/test_docs/docs"
no_gpu: True
Expand Down

0 comments on commit eb4a5cc

Please sign in to comment.