Skip to content

Commit

Permalink
[ Misc ] Refactor MoE to isolate Fp8 From Mixtral (vllm-project#5970)
Browse files Browse the repository at this point in the history
Co-authored-by: Robert Shaw <rshaw@neuralmagic>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
  • Loading branch information
3 people authored and jimpang committed Jul 24, 2024
1 parent 8a84d22 commit 6cb32da
Show file tree
Hide file tree
Showing 10 changed files with 537 additions and 306 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Mixtral-8x22B-Instruct-v0.1-FP8-dynamic -b "auto" -l 250 -f 5 -t 8
model_name: "neuralmagic/Mixtral-8x22B-Instruct-v0.1-FP8-dynamic"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.86
- name: "exact_match,flexible-extract"
value: 0.86
limit: 250
num_fewshot: 5
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8 -b "auto" -l 250 -f 5 -t 4
model_name: "neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.624
- name: "exact_match,flexible-extract"
value: 0.624
limit: 250
num_fewshot: 5
11 changes: 11 additions & 0 deletions .buildkite/lm-eval-harness/configs/Qwen2-57B-A14-Instruct.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
# bash ./run-lm-eval-gsm-vllm-baseline.sh -m Qwen/Qwen2-57B-A14B-Instruct -b "auto" -l 250 -f 5 -t 4
model_name: "Qwen/Qwen2-57B-A14B-Instruct"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.792
- name: "exact_match,flexible-extract"
value: 0.824
limit: 250
num_fewshot: 5
1 change: 1 addition & 0 deletions .buildkite/lm-eval-harness/configs/models-large.txt
Original file line number Diff line number Diff line change
@@ -1,2 +1,3 @@
Meta-Llama-3-70B-Instruct.yaml
Mixtral-8x7B-Instruct-v0.1.yaml
Qwen2-57B-A14-Instruct.yaml
4 changes: 2 additions & 2 deletions tests/kernels/test_moe.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,8 +77,8 @@ def test_mixtral_moe(dtype: torch.dtype):
for i in range(config.num_local_experts):
weights = (hf_moe.experts[i].w1.weight.data,
hf_moe.experts[i].w3.weight.data)
vllm_moe.w13_weight[i][:] = torch.cat(weights, dim=0)
vllm_moe.w2_weight[i][:] = hf_moe.experts[i].w2.weight.data
vllm_moe.experts.w13_weight[i][:] = torch.cat(weights, dim=0)
vllm_moe.experts.w2_weight[i][:] = hf_moe.experts[i].w2.weight.data

# Generate input batch of dimensions [batch_size, seq_len, hidden_dim]
hf_inputs = torch.randn((1, 64, config.hidden_size)).to(dtype).to("cuda")
Expand Down
4 changes: 4 additions & 0 deletions vllm/model_executor/layers/fused_moe/__init__.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,14 @@
from vllm.model_executor.layers.fused_moe.fused_moe import (
fused_experts, fused_moe, fused_topk, get_config_file_name, grouped_topk)
from vllm.model_executor.layers.fused_moe.layer import (FusedMoE,
FusedMoEMethodBase)

__all__ = [
"fused_moe",
"fused_topk",
"fused_experts",
"get_config_file_name",
"grouped_topk",
"FusedMoE",
"FusedMoEMethodBase",
]
197 changes: 197 additions & 0 deletions vllm/model_executor/layers/fused_moe/layer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,197 @@
from abc import abstractmethod
from typing import Optional

import torch

from vllm.distributed import (get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_reduce)
from vllm.logger import init_logger
from vllm.model_executor.layers.fused_moe.fused_moe import fused_moe
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.utils import set_weight_attrs

logger = init_logger(__name__)


class FusedMoEMethodBase(QuantizeMethodBase):

@abstractmethod
def create_weights(self, layer: torch.nn.Module, num_experts: int,
hidden_size: int, intermediate_size: int,
params_dtype: torch.dtype, **extra_weight_attrs):
raise NotImplementedError

@abstractmethod
def apply(self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool = True) -> torch.Tensor:
raise NotImplementedError


class UnquantizedFusedMoEMethod(FusedMoEMethodBase):
"""MoE method without quantization."""

def create_weights(self, layer: torch.nn.Module, num_experts: int,
hidden_size: int, intermediate_size: int,
params_dtype: torch.dtype, **extra_weight_attrs):

# Fused gate_up_proj (column parallel)
w13_weight = torch.nn.Parameter(torch.empty(num_experts,
2 * intermediate_size,
hidden_size,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("w13_weight", w13_weight)
set_weight_attrs(w13_weight, extra_weight_attrs)

# down_proj (row parallel)
w2_weight = torch.nn.Parameter(torch.empty(num_experts,
hidden_size,
intermediate_size,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("w2_weight", w2_weight)
set_weight_attrs(w2_weight, extra_weight_attrs)

def apply(self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool = True) -> torch.Tensor:

return fused_moe(x,
layer.w13_weight,
layer.w2_weight,
router_logits,
top_k,
renormalize=renormalize,
inplace=True)


class FusedMoE(torch.nn.Module):
"""FusedMoE layer for MoE models.
This layer contains both MergedColumnParallel weights (gate_up_proj /
w13) and RowParallelLinear weights (down_proj/ w2).
Note: Mixtral uses w1, w2, and w3 for gate, up, and down_proj. We
copy that naming convention here and handle any remapping in the
load_weights function in each model implementation.
Args:
num_experts: Number of experts in the model
top_k: Number of experts selected for each token
hidden_size: Input hidden state size of the transformer
intermediate_size: Intermediate size of the experts
params_dtype: Data type for the parameters.
reduce_results: Whether to all all_reduce on the output of the layer
renomalize: Whether to renormalize the logits in the fused_moe kernel
quant_config: Quantization configure.
"""

def __init__(
self,
num_experts: int,
top_k: int,
hidden_size: int,
intermediate_size: int,
params_dtype: Optional[torch.dtype] = None,
reduce_results: bool = False,
renormalize: bool = True,
quant_config: Optional[QuantizationConfig] = None,
tp_size: Optional[int] = None,
):
super().__init__()

if params_dtype is None:
params_dtype = torch.get_default_dtype()

self.tp_size = (tp_size if tp_size is not None else
get_tensor_model_parallel_world_size())
self.top_k = top_k
self.num_experts = num_experts
self.intermediate_size_per_partition = intermediate_size // self.tp_size
self.reduce_results = reduce_results
self.renormalize = renormalize

if quant_config is None:
self.quant_method: Optional[QuantizeMethodBase] = (
UnquantizedFusedMoEMethod())
else:
self.quant_method = quant_config.get_quant_method(self)
assert self.quant_method is not None

self.quant_method.create_weights(
layer=self,
num_experts=num_experts,
hidden_size=hidden_size,
intermediate_size=self.intermediate_size_per_partition,
params_dtype=params_dtype,
weight_loader=self.weight_loader)

def weight_loader(self, param: torch.nn.Parameter,
loaded_weight: torch.Tensor, weight_name: str,
shard_id: int, expert_id: int):
param_data = param.data

# FIXME(robertgshaw2-neuralmagic): Overfit to Mixtral.
# Follow up PR to enable fp8 for other MoE models.
if "input_scale" in weight_name or "w2.weight_scale" in weight_name:
if param_data[expert_id] != 1 and (param_data[expert_id] -
loaded_weight).abs() > 1e-5:
raise ValueError(
"input_scales of w1 and w3 of a layer "
f"must be equal. But got {param_data[expert_id]} "
f"vs. {loaded_weight}")
param_data[expert_id] = loaded_weight
# FIXME(robertgshaw2-neuralmagic): Overfit to Mixtral.
# Follow up PR to enable fp8 for other MoE models.
elif "weight_scale" in weight_name:
# We have to keep the weight scales of w1 and w3 because
# we need to re-quantize w1/w3 weights after weight loading.
assert "w1" in weight_name or "w3" in weight_name
shard_id = 0 if "w1" in weight_name else 1
param_data[expert_id][shard_id] = loaded_weight
else:
tp_rank = get_tensor_model_parallel_rank()
shard_size = self.intermediate_size_per_partition
shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size)

# w1, gate_proj case: Load into first shard of w13.
if shard_id == 0:
param_data[expert_id,
0:shard_size, :] = loaded_weight[shard, :]
# w3, up_proj case: Load into second shard of w13.
elif shard_id == 2:
param_data[expert_id, shard_size:2 *
shard_size, :] = loaded_weight[shard, :]
# w2, down_proj case: Load into only shard of w2.
elif shard_id == 1:
param_data[expert_id, :, :] = loaded_weight[:, shard]
else:
raise ValueError(
f"Shard id must be in [0,1,2] but got {shard_id}")

def forward(self, hidden_states: torch.Tensor,
router_logits: torch.Tensor):
assert self.quant_method is not None

# Matrix multiply.
final_hidden_states = self.quant_method.apply(
self,
x=hidden_states,
router_logits=router_logits,
top_k=self.top_k,
renormalize=self.renormalize)

if self.reduce_results and self.tp_size > 1:
final_hidden_states = tensor_model_parallel_all_reduce(
final_hidden_states)

return final_hidden_states
Loading

0 comments on commit 6cb32da

Please sign in to comment.