Skip to content

Commit

Permalink
basic bwe training framework added
Browse files Browse the repository at this point in the history
  • Loading branch information
Jan Buethe committed Apr 25, 2024
1 parent 0dc559f commit 479795e
Show file tree
Hide file tree
Showing 16 changed files with 932 additions and 31 deletions.
85 changes: 85 additions & 0 deletions dnn/torch/osce/concatenator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
import os
import argparse

import numpy as np
from scipy import signal
from scipy.io import wavfile
import resampy




parser = argparse.ArgumentParser()

parser.add_argument("filelist", type=str, help="file with filenames for concatenation in WAVE format")
parser.add_argument("target_fs", type=int, help="target sampling rate of concatenated file")
parser.add_argument("output", type=str, help="binary output file (integer16)")
parser.add_argument("--basedir", type=str, help="basedir for filenames in filelist, defaults to ./", default="./")
parser.add_argument("--normalize", action="store_true", help="apply normalization")
parser.add_argument("--db_max", type=float, help="max DB for random normalization", default=0)
parser.add_argument("--db_min", type=float, help="min DB for random normalization", default=0)
parser.add_argument("--verbose", action="store_true")

def read_filelist(basedir, filelist):
with open(filelist, "r") as f:
files = f.readlines()

fullfiles = [os.path.join(basedir, f.rstrip('\n')) for f in files if len(f.rstrip('\n')) > 0]

return fullfiles

def read_wave(file, target_fs):
fs, x = wavfile.read(file)

if fs < target_fs:
return None
print(f"[read_wave] warning: file {file} will be up-sampled from {fs} to {target_fs} Hz")

if fs != target_fs:
x = resampy.resample(x, fs, target_fs)

return x.astype(np.float32)

def random_normalize(x, db_min, db_max, max_val=2**15 - 1):
db = np.random.uniform(db_min, db_max, 1)
m = np.abs(x).max()
c = 10**(db/20) * max_val / m

return c * x


def concatenate(filelist : str, output : str, target_fs: int, normalize=True, db_min=0, db_max=0, verbose=False):

overlap_size = int(40 * target_fs / 8000)
overlap_mem = np.zeros(overlap_size, dtype=np.float32)
overlap_win1 = (0.5 + 0.5 * np.cos(np.arange(0, overlap_size) * np.pi / overlap_size)).astype(np.float32)
overlap_win2 = np.flipud(overlap_win1)

with open(output, 'wb') as f:
for file in filelist:
x = read_wave(file, target_fs)
if x is None: continue

if len(x) < 10 * overlap_size:
if verbose: print(f"skipping {file}...")
continue
elif verbose:
print(f"processing {file}...")

if normalize:
x = random_normalize(x, db_min, db_max)

x1 = x[:-overlap_size]
x1[:overlap_size] = overlap_win1 * overlap_mem + overlap_win2 * x1[:overlap_size]

f.write(x1.astype(np.int16).tobytes())

overlap_mem = x1[-overlap_size]


if __name__ == "__main__":
args = parser.parse_args()

filelist = read_filelist(args.basedir, args.filelist)

concatenate(filelist, args.output, args.target_fs, normalize=args.normalize, db_min=args.db_min, db_max=args.db_max, verbose=args.verbose)
3 changes: 2 additions & 1 deletion dnn/torch/osce/data/__init__.py
Original file line number Diff line number Diff line change
@@ -1,2 +1,3 @@
from .silk_enhancement_set import SilkEnhancementSet
from .lpcnet_vocoding_dataset import LPCNetVocodingDataset
from .lpcnet_vocoding_dataset import LPCNetVocodingDataset
from .simple_bwe_dataset import SimpleBWESet
85 changes: 85 additions & 0 deletions dnn/torch/osce/data/simple_bwe_dataset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
"""
/* Copyright (c) 2024 Amazon
Written by Jan Buethe */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""

import os

from torch.utils.data import Dataset
import numpy as np

from utils.bwe_features import bwe_feature_factory


class SimpleBWESet(Dataset):
FRAME_SIZE_16K = 160
def __init__(self,
path,
frames_per_sample=100,
spec_num_bands=32,
max_instafreq_bin=40
):

self.frames_per_sample = frames_per_sample
self.signal_16k = np.fromfile(os.path.join(path, 'signal_16kHz.s16'), dtype=np.int16)
self.signal_48k = np.fromfile(os.path.join(path, 'signal_48kHz.s16'), dtype=np.int16)

num_frames = min(len(self.signal_16k) // self.FRAME_SIZE_16K,
len(self.signal_48k) // (3 * self.FRAME_SIZE_16K))

self.create_features = bwe_feature_factory(spec_num_bands=spec_num_bands, max_instafreq_bin=max_instafreq_bin)

self.frame_offset = 4

self.len = (num_frames - self.frame_offset) // frames_per_sample

def __len__(self):
return self.len

def __getitem__(self, index):

frame_start = self.frames_per_sample * index + self.frame_offset
frame_stop = frame_start + self.frames_per_sample

signal_start16 = frame_start * self.FRAME_SIZE_16K
signal_stop16 = frame_stop * self.FRAME_SIZE_16K

x_16 = self.signal_16k[signal_start16 : signal_stop16].astype(np.float32) / 2**15
history_16 = self.signal_16k[signal_start16 - 320 : signal_start16].astype(np.float32) / 2**15

x_48 = self.signal_48k[3 * signal_start16 : 3 * signal_stop16].astype(np.float32) / 2**15

features = self.create_features(
x_16,
history_16
)

return {
'features' : features,
'x_16' : x_16.astype(np.float32),
'x_48' : x_48.astype(np.float32),
}
95 changes: 95 additions & 0 deletions dnn/torch/osce/engine/bwe_engine.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
import torch
from tqdm import tqdm
import sys

def train_one_epoch(model, criterion, optimizer, dataloader, device, scheduler, log_interval=10):

model.to(device)
model.train()

running_loss = 0
previous_running_loss = 0


with tqdm(dataloader, unit='batch', file=sys.stdout) as tepoch:

for i, batch in enumerate(tepoch):

# set gradients to zero
optimizer.zero_grad()

# push batch to device
for key in batch:
batch[key] = batch[key].to(device)

target = batch['x_48']

# calculate model output
output = model(batch['x_16'].unsqueeze(1), batch['features'])

# calculate loss
loss = criterion(target, output.squeeze(1))

# calculate gradients
loss.backward()

# update weights
optimizer.step()

# update learning rate
scheduler.step()

# sparsification
if hasattr(model, 'sparsifier'):
model.sparsifier()

# update running loss
running_loss += float(loss.cpu())

# update status bar
if i % log_interval == 0:
tepoch.set_postfix(running_loss=f"{running_loss/(i + 1):8.7f}", current_loss=f"{(running_loss - previous_running_loss)/log_interval:8.7f}")
previous_running_loss = running_loss


running_loss /= len(dataloader)

return running_loss

def evaluate(model, criterion, dataloader, device, log_interval=10):

model.to(device)
model.eval()

running_loss = 0
previous_running_loss = 0

with torch.no_grad():
with tqdm(dataloader, unit='batch', file=sys.stdout) as tepoch:

for i, batch in enumerate(tepoch):

# push batch to device
for key in batch:
batch[key] = batch[key].to(device)

target = batch['x_48']

# calculate model output
output = model(batch['x_16'].unsqueeze(1), batch['features'])

# calculate loss
loss = criterion(target, output.squeeze(1))

# update running loss
running_loss += float(loss.cpu())

# update status bar
if i % log_interval == 0:
tepoch.set_postfix(running_loss=f"{running_loss/(i + 1):8.7f}", current_loss=f"{(running_loss - previous_running_loss)/log_interval:8.7f}")
previous_running_loss = running_loss


running_loss /= len(dataloader)

return running_loss
18 changes: 18 additions & 0 deletions dnn/torch/osce/extract_setup.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
import torch
import yaml
import argparse


parser = argparse.ArgumentParser()
parser.add_argument('checkpoint', type=str, help='model checkpoint')
parser.add_argument('setup', type=str, help='setup filename')

if __name__ == "__main__":
args = parser.parse_args()

ckpt = torch.load(args.checkpoint, map_location='cpu')

setup = ckpt['setup']

with open(args.setup, "w") as f:
yaml.dump(setup, f)
27 changes: 13 additions & 14 deletions dnn/torch/osce/losses/td_lowpass.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,28 +7,27 @@
class TDLowpass(torch.nn.Module):
def __init__(self, numtaps, cutoff, power=2):
super().__init__()

self.b = scipy.signal.firwin(numtaps, cutoff)
self.weight = torch.from_numpy(self.b).float().view(1, 1, -1)
self.weight = torch.nn.Parameter(torch.from_numpy(self.b).float().view(1, 1, -1), requires_grad=False)
self.power = power

def forward(self, y_true, y_pred):

assert len(y_true.shape) == 3 and len(y_pred.shape) == 3

diff = y_true - y_pred
diff_lp = torch.nn.functional.conv1d(diff, self.weight)

loss = torch.mean(torch.abs(diff_lp ** self.power))

return loss, diff_lp

def get_freqz(self):
freq, response = scipy.signal.freqz(self.b)

return freq, response









2 changes: 1 addition & 1 deletion dnn/torch/osce/make_default_setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@
parser = argparse.ArgumentParser()

parser.add_argument('name', type=str, help='name of default setup file')
parser.add_argument('--model', choices=['lace', 'nolace', 'lavoce'], help='model name', default='lace')
parser.add_argument('--model', choices=['lace', 'nolace', 'lavoce', 'bwenet'], help='model name', default='lace')
parser.add_argument('--adversarial', action='store_true', help='setup for adversarial training')
parser.add_argument('--path2dataset', type=str, help='dataset path', default=None)

Expand Down
2 changes: 2 additions & 0 deletions dnn/torch/osce/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,11 +32,13 @@
from .lavoce import LaVoce
from .lavoce_400 import LaVoce400
from .fd_discriminator import TFDMultiResolutionDiscriminator as FDMResDisc
from .bwe_net import BWENet

model_dict = {
'lace': LACE,
'nolace': NoLACE,
'lavoce': LaVoce,
'lavoce400': LaVoce400,
'fdmresdisc': FDMResDisc,
'bwenet' : BWENet
}
Loading

0 comments on commit 479795e

Please sign in to comment.