-
Notifications
You must be signed in to change notification settings - Fork 22
Open
Labels
enhancementNew feature or requestNew feature or request
Milestone
Description
I am thinking about how we should do the Linear Discriminant Analysis (LDA) in CRRao. I am thinking out loud. Please correct me if I am saying something wrong. The design that I am thinking of is as follows:
container = @fitmodel(formula, data, modelClass,ClassificationType,CovarianceType)Example: For binary classification:
container = @fitmodel(Specied~PetalLength+SepalLength,data,LinearDiscriminantAnalysis(),Binary)
container = @fitmodel(Specied~PetalLength+SepalLength,data,LinearDiscriminantAnalysis(),Binary,ShrinkageCov)
container = @fitmodel(Specied~PetalLength+SepalLength,data,LinearDiscriminantAnalysis(),Binary,PythonCov)Example: For multi-class classification:
container = @fitmodel(Specied~PetalLength+SepalLength,data,LinearDiscriminantAnalysis(),Multi)
container = @fitmodel(Specied~PetalLength+SepalLength,data,LinearDiscriminantAnalysis(),Multi,ShrinkageCov)
container = @fitmodel(Specied~PetalLength+SepalLength,data,LinearDiscriminantAnalysis(),Multi,PythonCov)The default covariance type would be sample covariance.
Metadata
Metadata
Assignees
Labels
enhancementNew feature or requestNew feature or request