Skip to content

Design for Linear Discriminant Analysis (LDA) #25

@sourish-cmi

Description

@sourish-cmi

I am thinking about how we should do the Linear Discriminant Analysis (LDA) in CRRao. I am thinking out loud. Please correct me if I am saying something wrong. The design that I am thinking of is as follows:

container = @fitmodel(formula, data, modelClass,ClassificationType,CovarianceType)

Example: For binary classification:

container = @fitmodel(Specied~PetalLength+SepalLength,data,LinearDiscriminantAnalysis(),Binary)
container = @fitmodel(Specied~PetalLength+SepalLength,data,LinearDiscriminantAnalysis(),Binary,ShrinkageCov)
container = @fitmodel(Specied~PetalLength+SepalLength,data,LinearDiscriminantAnalysis(),Binary,PythonCov)

Example: For multi-class classification:

container = @fitmodel(Specied~PetalLength+SepalLength,data,LinearDiscriminantAnalysis(),Multi)
container = @fitmodel(Specied~PetalLength+SepalLength,data,LinearDiscriminantAnalysis(),Multi,ShrinkageCov)
container = @fitmodel(Specied~PetalLength+SepalLength,data,LinearDiscriminantAnalysis(),Multi,PythonCov)

The default covariance type would be sample covariance.

Metadata

Metadata

Assignees

Labels

enhancementNew feature or request

Type

No type

Projects

No projects

Relationships

None yet

Development

No branches or pull requests

Issue actions