pycls can be used as a library (e.g. import pretrained models) or as a framework (e.g. modify for your needs). This document provides brief installation instructions and basic usage examples for both use cases.
Notes:
- pycls has been tested with PyTorch 1.6, CUDA 9.2 and cuDNN 7.1
- pycls currently does not support running on CPU; a GPU system is required
Install the package:
pip install pycls
Load a pretrained model:
model = pycls.models.regnetx("400MF", pretrained=True)
Create a model with the number of classes altered:
model = pycls.models.regnety("4.0GF", pretrained=False, cfg_list=("MODEL.NUM_CLASSES", 100))
Please see the MODEL_ZOO.md
for the available pretrained models.
Clone the repository:
git clone https://github.com/facebookresearch/pycls
Install dependencies:
pip install -r requirements.txt
Set up modules:
python setup.py develop --user
Please see DATA.md
for the instructions on setting up datasets.
RegNetX-400MF on ImageNet with 8 GPUs:
python tools/test_net.py \
--cfg configs/dds_baselines/regnetx/RegNetX-400MF_dds_8gpu.yaml \
TEST.WEIGHTS https://dl.fbaipublicfiles.com/pycls/dds_baselines/160905967/RegNetX-400MF_dds_8gpu.pyth \
OUT_DIR /tmp
RegNetX-400MF on ImageNet with 8 GPUs:
python tools/train_net.py \
--cfg configs/dds_baselines/regnetx/RegNetX-400MF_dds_8gpu.yaml \
OUT_DIR /tmp
RegNetX-400MF on ImageNet with 8 GPUs:
python tools/train_net.py \
--cfg configs/dds_baselines/regnetx/RegNetX-400MF_dds_8gpu.yaml \
TRAIN.WEIGHTS https://dl.fbaipublicfiles.com/pycls/dds_baselines/160905967/RegNetX-400MF_dds_8gpu.pyth \
OUT_DIR /tmp
RegNetX-400MF with 1 GPU:
python tools/time_net.py
--cfg configs/dds_baselines/regnetx/RegNetX-400MF_dds_8gpu.yaml \
NUM_GPUS 1 \
TRAIN.BATCH_SIZE 64 \
TEST.BATCH_SIZE 64 \
PREC_TIME.WARMUP_ITER 5 \
PREC_TIME.NUM_ITER 50
Scale a RegNetY-4GF by 4x using fast compound scaling (see https://arxiv.org/abs/2103.06877):
python tools/scale_net.py \
--cfg configs/dds_baselines/regnety/RegNetY-4.0GF_dds_8gpu.yaml \
OUT_DIR ./ \
CFG_DEST "RegNetY-4.0GF_dds_8gpu_scaled.yaml" \
MODEL.SCALING_FACTOR 4.0 \
MODEL.SCALING_TYPE "d1_w8_g8_r1"