Skip to content

tabeltalk is a declarative language for seamless interaction with your database, enabling you to define data access configurations in a YAML file and query their data lakes using natural language

License

Notifications You must be signed in to change notification settings

wtbates99/tabletalk

Repository files navigation

tabletalk

tabletalk is a command-line interface (CLI) tool designed to let you "talk" to your databases using natural language. Unlike heavier frameworks, tabletalk is built for simplicity and ease of use. With tabletalk, you can define specific "contexts" based on relationships in your data, then query that data conversationally, either by generating SQL or asking questions directly. It connects to your existing databases—BigQuery, SQLite, MySQL, or Postgres—pulls schemas based on your defined contexts, and leverages large language models (LLMs) from OpenAI and Anthropic to chat with your data effectively.

Features

  • Database Support: Connect to BigQuery, SQLite, MySQL, and Postgres.
  • Custom Contexts: Define relationships in your data to create focused querying scenarios.
  • LLM Integration: Use OpenAI or Anthropic models to generate SQL or answer questions.
  • Natural Language Queries: Ask questions about your data in plain English, with SQL generated automatically.
  • Local Execution: Run generated SQL locally against your database.

Installation

Install tabletalk via pip:

pip install tabletalk

Configuration

tabletalk relies on a configuration file named tabletalk.yaml to set up your database and LLM preferences. This file includes:

  • Provider: Details for connecting to your database.
  • LLM: Settings for the language model, such as provider, API key, and model specifics.
  • Contexts: Path to a directory containing context definitions.
  • Output: Directory where manifest files (schema data) are stored.

Note: For security, set API keys as environment variables (e.g., export ANTHROPIC_API_KEY="your-key-here").

Example tabletalk.yaml:

provider:
  type: mysql
  host: localhost
  user: root
  password: ${MYSQL_PASSWORD}
  database: test_store

llm:
  provider: anthropic
  api_key: ${ANTHROPIC_API_KEY}
  model: claude-3-5-sonnet-20240620
  max_tokens: 500
  temperature: 0

contexts: contexts
output: manifest

Defining Contexts

Contexts are defined in separate YAML files within the contexts/ directory. Each context specifies a subset of your database—datasets and tables—relevant to a particular querying scenario.

Example contexts/sales_context.yaml:

name: sales_context
datasets:
  - name: test_store
    tables:
      - customers
      - orders

Usage

tabletalk offers three core CLI commands:

Initialize the Project

tabletalk init

Creates tabletalk.yaml, a contexts/ folder, and a manifest/ folder.

Apply Contexts

tabletalk apply

Reads context definitions, connects to your database, pulls the relevant schemas, and generates manifest files in the manifest/ directory.

Query Command

Starts an interactive session for querying your data via the command line.

tabletalk query [PROJECT_FOLDER]
  • PROJECT_FOLDER: (Optional) Path to the project directory. Defaults to the current directory.

Steps:

  1. Select a Manifest: Choose from available manifest files (e.g., 1. sales_context.json).
  2. Ask Questions: Type a natural language question (e.g., "How many customers placed orders last month?").
  3. Change Manifests: Type change to switch to a different manifest.
  4. Exit: Type exit to end the session.

Serve Command

Launches a Flask web server providing a graphical interface for querying your data.

tabletalk serve [--port PORT]
  • --port PORT: (Optional) Specifies the port. Defaults to 5000.

Steps:

  1. Open the Web Interface: Navigate to http://localhost:PORT.
  2. Select a Manifest: Click a manifest (e.g., sales_context.json).
  3. Ask a Question: Type a question (e.g., "How many customers placed orders last month?") and click "Send".

Note: Both query and serve commands require manifest files, generated by running tabletalk apply first.

Example Workflow

Step 1: Initialize the Project

tabletalk init

Creates the following structure:

project_folder/
├── tabletalk.yaml
├── contexts/
└── manifest/

Step 2: Define a Context

Create contexts/sales_context.yaml:

name: sales_context
datasets:
  - name: test_store
    tables:
      - customers
      - orders

Step 3: Apply the Schema

tabletalk apply

Generates a manifest file (e.g., manifest/sales_context.json).

Step 4: Query Your Data

tabletalk query
  1. Select sales_context.json.
  2. Ask a question like: "How many customers placed orders last month?"
  3. View the generated SQL and execute it locally.
  4. Type exit to end the session.

Step 5: Start the Web Server

tabletalk serve --port 8080

Step 6: Access the Web Interface

Open http://localhost:8080 in your browser.

  • Select a Manifest: Click on sales_context.json.
  • Ask a Question: Type "How many customers placed orders last month?" and click "Send".
  • View Generated SQL: The query appears in the chat history.

Contributing

Want to help improve tabletalk? Fork the repository, make your changes, and submit a pull request. For major updates, please open an issue first to discuss your ideas.

License

This code is licensed under CC BY-NC 4.0 for non-commercial use. For commercial use, contact wtbates99@gmail.com.

About

tabeltalk is a declarative language for seamless interaction with your database, enabling you to define data access configurations in a YAML file and query their data lakes using natural language

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published