Skip to content

Question about the surface stress #2209

Open
@mathieulandreau

Description

@mathieulandreau

Hi,

I am looking for the exact equation of the surface stress used in the first cell. In module_diffusion_em, I found

CASE (1,2) ! ustar computed from surface routine
    DO j = j_start, j_end
    DO i = i_start, ite
       V0_u=0.
       tao_xz=0.
       V0_u=    sqrt((u_2(i,kts,j)**2) +         &
                        (((v_2(i  ,kts,j  )+          &
                           v_2(i  ,kts,j+1)+          &
                           v_2(i-1,kts,j  )+          &
                           v_2(i-1,kts,j+1))/4)**2))+epsilon
       ustar=0.5*(ust(i,j)+ust(i-1,j))

       tao_xz=ustar*ustar*u_2(i,kts,j)/V0_u
       ru_tendf(i,kts,j)=ru_tendf(i,kts,j) +   g*tao_xz*0.5*(rho(i,kts,j)+rho(i-1,kts,j))/dnw(kts)
       IF ( (config_flags%m_opt .EQ. 1) .OR. (config_flags%sfs_opt .GT. 0) ) THEN
          nba_mij(i,kts,j,P_m13) = -tao_xz
       ENDIF
    ENDDO
    ENDDO

I suppose that g, rho and dnw are the different terms of $\mu_d$. $\Delta z$ is missing however so is the equation :
$\partial_t (u) = ... - u^{*2} . \frac{u}{\sqrt{u^2 + v^2}} \frac{1}{\Delta z}$
By the way, according to Skamarock et al. (2019), $U = \mu_d u /m_y$. Isn't there a $m_y$ missing ?

Thank you,
Mathieu

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions