Pytorch code for following paper:
- Title : Extended U-Net for Speaker Verification in Noisy Environments (Oral presentation at Interspeech2022)
- Autor : Ju-ho Kim, Jungwoo Heo, Hye-jin Shim, and Ha-Jin Yu
- We used 'nvcr.io/nvidia/pytorch:21.04-py3' image of Nvidia GPU Cloud for conducting our experiments.
- We used three Titan RTX GPUs for training.
- Python 3.6.9
- Pytorch 1.8.1
- Torchaudio 0.8.1
We used VoxCeleb1 dataset for training and test. For noise synthesis, we used the MUSAN corpus.
Go into run directory
./train.sh
@article{kim2022extended,
title={Extended U-Net for Speaker Verification in Noisy Environments},
author={Kim, Ju-ho and Heo, Jungwoo and Shim, Hye-jin and Yu, Ha-Jin},
journal={arXiv preprint arXiv:2206.13044},
year={2022}
}