Skip to content

Commit

Permalink
Fix Lora Extract GUI issue
Browse files Browse the repository at this point in the history
  • Loading branch information
bmaltais committed Feb 17, 2024
1 parent 369d014 commit dfe3bec
Show file tree
Hide file tree
Showing 4 changed files with 122 additions and 58 deletions.
2 changes: 1 addition & 1 deletion .release
Original file line number Diff line number Diff line change
@@ -1 +1 @@
v22.6.1
v22.6.2
3 changes: 3 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -503,6 +503,9 @@ masterpiece, best quality, 1boy, in business suit, standing at street, looking b


## Change History
* 2024/02/17 (v22.6.2)
- Fix issue with Lora Extract GUI

* 2024/02/15 (v22.6.1)
- Add support for multi-gpu parameters in the GUI under the "Parameters > Advanced" tab.
- Significant rewrite of how parameters are created in the code. I hope I did not break anything in the process... Will make the code easier to update.
Expand Down
2 changes: 1 addition & 1 deletion library/extract_lora_gui.py
Original file line number Diff line number Diff line change
Expand Up @@ -95,7 +95,7 @@ def extract_lora(

def gradio_extract_lora_tab(headless=False):
def change_sdxl(sdxl):
return gr(visible=sdxl), gr(visible=sdxl)
return gr.Dropdown(visible=sdxl), gr.Dropdown(visible=sdxl)



Expand Down
173 changes: 117 additions & 56 deletions tools/extract_locon.py
Original file line number Diff line number Diff line change
@@ -1,129 +1,190 @@
import os, sys

sys.path.insert(0, os.getcwd())
import argparse


def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"base_model", help="The model which use it to train the dreambooth model",
default='', type=str
"base_model",
help="The model which use it to train the dreambooth model",
default="",
type=str,
)
parser.add_argument(
"db_model",
help="the dreambooth model you want to extract the locon",
default="",
type=str,
)
parser.add_argument(
"db_model", help="the dreambooth model you want to extract the locon",
default='', type=str
"output_name", help="the output model", default="./out.pt", type=str
)
parser.add_argument(
"output_name", help="the output model",
default='./out.pt', type=str
"--is_v2",
help="Your base/db model is sd v2 or not",
default=False,
action="store_true",
)
parser.add_argument(
"--is_v2", help="Your base/db model is sd v2 or not",
default=False, action="store_true"
"--is_sdxl",
help="Your base/db model is sdxl or not",
default=False,
action="store_true",
)
parser.add_argument(
"--device", help="Which device you want to use to extract the locon",
default='cpu', type=str
"--device",
help="Which device you want to use to extract the locon",
default="cpu",
type=str,
)
parser.add_argument(
"--mode",
"--mode",
help=(
'extraction mode, can be "fixed", "threshold", "ratio", "quantile". '
'extraction mode, can be "full", "fixed", "threshold", "ratio", "quantile". '
'If not "fixed", network_dim and conv_dim will be ignored'
),
default='fixed', type=str
default="fixed",
type=str,
)
parser.add_argument(
"--safetensors", help='use safetensors to save locon model',
default=True, action="store_true"
"--safetensors",
help="use safetensors to save locon model",
default=False,
action="store_true",
)
parser.add_argument(
"--linear_dim", help="network dim for linear layer in fixed mode",
default=1, type=int
"--linear_dim",
help="network dim for linear layer in fixed mode",
default=1,
type=int,
)
parser.add_argument(
"--conv_dim", help="network dim for conv layer in fixed mode",
default=1, type=int
"--conv_dim",
help="network dim for conv layer in fixed mode",
default=1,
type=int,
)
parser.add_argument(
"--linear_threshold", help="singular value threshold for linear layer in threshold mode",
default=0., type=float
"--linear_threshold",
help="singular value threshold for linear layer in threshold mode",
default=0.0,
type=float,
)
parser.add_argument(
"--conv_threshold", help="singular value threshold for conv layer in threshold mode",
default=0., type=float
"--conv_threshold",
help="singular value threshold for conv layer in threshold mode",
default=0.0,
type=float,
)
parser.add_argument(
"--linear_ratio", help="singular ratio for linear layer in ratio mode",
default=0., type=float
"--linear_ratio",
help="singular ratio for linear layer in ratio mode",
default=0.0,
type=float,
)
parser.add_argument(
"--conv_ratio", help="singular ratio for conv layer in ratio mode",
default=0., type=float
"--conv_ratio",
help="singular ratio for conv layer in ratio mode",
default=0.0,
type=float,
)
parser.add_argument(
"--linear_quantile", help="singular value quantile for linear layer quantile mode",
default=1., type=float
"--linear_quantile",
help="singular value quantile for linear layer quantile mode",
default=1.0,
type=float,
)
parser.add_argument(
"--conv_quantile", help="singular value quantile for conv layer quantile mode",
default=1., type=float
"--conv_quantile",
help="singular value quantile for conv layer quantile mode",
default=1.0,
type=float,
)
parser.add_argument(
"--use_sparse_bias", help="enable sparse bias",
default=False, action="store_true"
"--use_sparse_bias",
help="enable sparse bias",
default=False,
action="store_true",
)
parser.add_argument(
"--sparsity", help="sparsity for sparse bias",
default=0.98, type=float
"--sparsity", help="sparsity for sparse bias", default=0.98, type=float
)
parser.add_argument(
"--disable_cp", help="don't use cp decomposition",
default=False, action="store_true"
"--disable_cp",
help="don't use cp decomposition",
default=False,
action="store_true",
)
return parser.parse_args()


ARGS = get_args()


from lycoris.utils import extract_diff
from lycoris.kohya.model_utils import load_models_from_stable_diffusion_checkpoint
from lycoris.kohya.sdxl_model_util import load_models_from_sdxl_checkpoint

import torch
from safetensors.torch import save_file


def main():
args = ARGS
base = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.base_model)
db = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.db_model)

if args.is_sdxl:
base = load_models_from_sdxl_checkpoint(None, args.base_model, args.device)
db = load_models_from_sdxl_checkpoint(None, args.db_model, args.device)
else:
base = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.base_model)
db = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.db_model)

linear_mode_param = {
'fixed': args.linear_dim,
'threshold': args.linear_threshold,
'ratio': args.linear_ratio,
'quantile': args.linear_quantile,
"fixed": args.linear_dim,
"threshold": args.linear_threshold,
"ratio": args.linear_ratio,
"quantile": args.linear_quantile,
"full": None,
}[args.mode]
conv_mode_param = {
'fixed': args.conv_dim,
'threshold': args.conv_threshold,
'ratio': args.conv_ratio,
'quantile': args.conv_quantile,
"fixed": args.conv_dim,
"threshold": args.conv_threshold,
"ratio": args.conv_ratio,
"quantile": args.conv_quantile,
"full": None,
}[args.mode]


if args.is_sdxl:
db_tes = [db[0], db[1]]
db_unet = db[3]
base_tes = [base[0], base[1]]
base_unet = base[3]
else:
db_tes = [db[0]]
db_unet = db[2]
base_tes = [base[0]]
base_unet = base[2]

state_dict = extract_diff(
base, db,
base_tes,
db_tes,
base_unet,
db_unet,
args.mode,
linear_mode_param, conv_mode_param,
args.device,
args.use_sparse_bias, args.sparsity,
not args.disable_cp
linear_mode_param,
conv_mode_param,
args.device,
args.use_sparse_bias,
args.sparsity,
not args.disable_cp,
)

if args.safetensors:
save_file(state_dict, args.output_name)
else:
torch.save(state_dict, args.output_name)


if __name__ == '__main__':
if __name__ == "__main__":
main()

0 comments on commit dfe3bec

Please sign in to comment.