forked from bmaltais/kohya_ss
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
122 additions
and
58 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
v22.6.1 | ||
v22.6.2 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,129 +1,190 @@ | ||
import os, sys | ||
|
||
sys.path.insert(0, os.getcwd()) | ||
import argparse | ||
|
||
|
||
def get_args(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"base_model", help="The model which use it to train the dreambooth model", | ||
default='', type=str | ||
"base_model", | ||
help="The model which use it to train the dreambooth model", | ||
default="", | ||
type=str, | ||
) | ||
parser.add_argument( | ||
"db_model", | ||
help="the dreambooth model you want to extract the locon", | ||
default="", | ||
type=str, | ||
) | ||
parser.add_argument( | ||
"db_model", help="the dreambooth model you want to extract the locon", | ||
default='', type=str | ||
"output_name", help="the output model", default="./out.pt", type=str | ||
) | ||
parser.add_argument( | ||
"output_name", help="the output model", | ||
default='./out.pt', type=str | ||
"--is_v2", | ||
help="Your base/db model is sd v2 or not", | ||
default=False, | ||
action="store_true", | ||
) | ||
parser.add_argument( | ||
"--is_v2", help="Your base/db model is sd v2 or not", | ||
default=False, action="store_true" | ||
"--is_sdxl", | ||
help="Your base/db model is sdxl or not", | ||
default=False, | ||
action="store_true", | ||
) | ||
parser.add_argument( | ||
"--device", help="Which device you want to use to extract the locon", | ||
default='cpu', type=str | ||
"--device", | ||
help="Which device you want to use to extract the locon", | ||
default="cpu", | ||
type=str, | ||
) | ||
parser.add_argument( | ||
"--mode", | ||
"--mode", | ||
help=( | ||
'extraction mode, can be "fixed", "threshold", "ratio", "quantile". ' | ||
'extraction mode, can be "full", "fixed", "threshold", "ratio", "quantile". ' | ||
'If not "fixed", network_dim and conv_dim will be ignored' | ||
), | ||
default='fixed', type=str | ||
default="fixed", | ||
type=str, | ||
) | ||
parser.add_argument( | ||
"--safetensors", help='use safetensors to save locon model', | ||
default=True, action="store_true" | ||
"--safetensors", | ||
help="use safetensors to save locon model", | ||
default=False, | ||
action="store_true", | ||
) | ||
parser.add_argument( | ||
"--linear_dim", help="network dim for linear layer in fixed mode", | ||
default=1, type=int | ||
"--linear_dim", | ||
help="network dim for linear layer in fixed mode", | ||
default=1, | ||
type=int, | ||
) | ||
parser.add_argument( | ||
"--conv_dim", help="network dim for conv layer in fixed mode", | ||
default=1, type=int | ||
"--conv_dim", | ||
help="network dim for conv layer in fixed mode", | ||
default=1, | ||
type=int, | ||
) | ||
parser.add_argument( | ||
"--linear_threshold", help="singular value threshold for linear layer in threshold mode", | ||
default=0., type=float | ||
"--linear_threshold", | ||
help="singular value threshold for linear layer in threshold mode", | ||
default=0.0, | ||
type=float, | ||
) | ||
parser.add_argument( | ||
"--conv_threshold", help="singular value threshold for conv layer in threshold mode", | ||
default=0., type=float | ||
"--conv_threshold", | ||
help="singular value threshold for conv layer in threshold mode", | ||
default=0.0, | ||
type=float, | ||
) | ||
parser.add_argument( | ||
"--linear_ratio", help="singular ratio for linear layer in ratio mode", | ||
default=0., type=float | ||
"--linear_ratio", | ||
help="singular ratio for linear layer in ratio mode", | ||
default=0.0, | ||
type=float, | ||
) | ||
parser.add_argument( | ||
"--conv_ratio", help="singular ratio for conv layer in ratio mode", | ||
default=0., type=float | ||
"--conv_ratio", | ||
help="singular ratio for conv layer in ratio mode", | ||
default=0.0, | ||
type=float, | ||
) | ||
parser.add_argument( | ||
"--linear_quantile", help="singular value quantile for linear layer quantile mode", | ||
default=1., type=float | ||
"--linear_quantile", | ||
help="singular value quantile for linear layer quantile mode", | ||
default=1.0, | ||
type=float, | ||
) | ||
parser.add_argument( | ||
"--conv_quantile", help="singular value quantile for conv layer quantile mode", | ||
default=1., type=float | ||
"--conv_quantile", | ||
help="singular value quantile for conv layer quantile mode", | ||
default=1.0, | ||
type=float, | ||
) | ||
parser.add_argument( | ||
"--use_sparse_bias", help="enable sparse bias", | ||
default=False, action="store_true" | ||
"--use_sparse_bias", | ||
help="enable sparse bias", | ||
default=False, | ||
action="store_true", | ||
) | ||
parser.add_argument( | ||
"--sparsity", help="sparsity for sparse bias", | ||
default=0.98, type=float | ||
"--sparsity", help="sparsity for sparse bias", default=0.98, type=float | ||
) | ||
parser.add_argument( | ||
"--disable_cp", help="don't use cp decomposition", | ||
default=False, action="store_true" | ||
"--disable_cp", | ||
help="don't use cp decomposition", | ||
default=False, | ||
action="store_true", | ||
) | ||
return parser.parse_args() | ||
|
||
|
||
ARGS = get_args() | ||
|
||
|
||
from lycoris.utils import extract_diff | ||
from lycoris.kohya.model_utils import load_models_from_stable_diffusion_checkpoint | ||
from lycoris.kohya.sdxl_model_util import load_models_from_sdxl_checkpoint | ||
|
||
import torch | ||
from safetensors.torch import save_file | ||
|
||
|
||
def main(): | ||
args = ARGS | ||
base = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.base_model) | ||
db = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.db_model) | ||
|
||
if args.is_sdxl: | ||
base = load_models_from_sdxl_checkpoint(None, args.base_model, args.device) | ||
db = load_models_from_sdxl_checkpoint(None, args.db_model, args.device) | ||
else: | ||
base = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.base_model) | ||
db = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.db_model) | ||
|
||
linear_mode_param = { | ||
'fixed': args.linear_dim, | ||
'threshold': args.linear_threshold, | ||
'ratio': args.linear_ratio, | ||
'quantile': args.linear_quantile, | ||
"fixed": args.linear_dim, | ||
"threshold": args.linear_threshold, | ||
"ratio": args.linear_ratio, | ||
"quantile": args.linear_quantile, | ||
"full": None, | ||
}[args.mode] | ||
conv_mode_param = { | ||
'fixed': args.conv_dim, | ||
'threshold': args.conv_threshold, | ||
'ratio': args.conv_ratio, | ||
'quantile': args.conv_quantile, | ||
"fixed": args.conv_dim, | ||
"threshold": args.conv_threshold, | ||
"ratio": args.conv_ratio, | ||
"quantile": args.conv_quantile, | ||
"full": None, | ||
}[args.mode] | ||
|
||
|
||
if args.is_sdxl: | ||
db_tes = [db[0], db[1]] | ||
db_unet = db[3] | ||
base_tes = [base[0], base[1]] | ||
base_unet = base[3] | ||
else: | ||
db_tes = [db[0]] | ||
db_unet = db[2] | ||
base_tes = [base[0]] | ||
base_unet = base[2] | ||
|
||
state_dict = extract_diff( | ||
base, db, | ||
base_tes, | ||
db_tes, | ||
base_unet, | ||
db_unet, | ||
args.mode, | ||
linear_mode_param, conv_mode_param, | ||
args.device, | ||
args.use_sparse_bias, args.sparsity, | ||
not args.disable_cp | ||
linear_mode_param, | ||
conv_mode_param, | ||
args.device, | ||
args.use_sparse_bias, | ||
args.sparsity, | ||
not args.disable_cp, | ||
) | ||
|
||
if args.safetensors: | ||
save_file(state_dict, args.output_name) | ||
else: | ||
torch.save(state_dict, args.output_name) | ||
|
||
|
||
if __name__ == '__main__': | ||
if __name__ == "__main__": | ||
main() |