Skip to content

Commit

Permalink
fix format, add new conv rank to metadata comment
Browse files Browse the repository at this point in the history
  • Loading branch information
kohya-ss committed Feb 24, 2024
1 parent 738c397 commit 52b3799
Showing 1 changed file with 101 additions and 67 deletions.
168 changes: 101 additions & 67 deletions networks/resize_lora.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,10 +5,12 @@
import os
import argparse
import torch
from safetensors.torch import load_file, save_file
from safetensors.torch import load_file, save_file, safe_open
from tqdm import tqdm
from library import train_util
import numpy as np

from library import train_util
from library import model_util
from library.utils import setup_logging

setup_logging()
Expand Down Expand Up @@ -36,16 +38,18 @@ def load_state_dict(file_name, dtype):

return sd, metadata

def save_to_file(file_name, model, state_dict, dtype, metadata):

def save_to_file(file_name, state_dict, dtype, metadata):
if dtype is not None:
for key in list(state_dict.keys()):
if type(state_dict[key]) == torch.Tensor:
state_dict[key] = state_dict[key].to(dtype)

if model_util.is_safetensors(file_name):
save_file(model, file_name, metadata)
save_file(state_dict, file_name, metadata)
else:
torch.save(model, file_name)
torch.save(state_dict, file_name)


# Indexing functions

Expand All @@ -62,18 +66,18 @@ def index_sv_cumulative(S, target):
def index_sv_fro(S, target):
S_squared = S.pow(2)
S_fro_sq = float(torch.sum(S_squared))
sum_S_squared = torch.cumsum(S_squared, dim=0)/S_fro_sq
sum_S_squared = torch.cumsum(S_squared, dim=0) / S_fro_sq
index = int(torch.searchsorted(sum_S_squared, target**2)) + 1
index = max(1, min(index, len(S)-1))
index = max(1, min(index, len(S) - 1))

return index


def index_sv_ratio(S, target):
max_sv = S[0]
min_sv = max_sv/target
min_sv = max_sv / target
index = int(torch.sum(S > min_sv).item())
index = max(1, min(index, len(S)-1))
index = max(1, min(index, len(S) - 1))

return index

Expand Down Expand Up @@ -169,10 +173,10 @@ def rank_resize(S, rank, dynamic_method, dynamic_param, scale=1):

if S[0] <= MIN_SV: # Zero matrix, set dim to 1
new_rank = 1
new_alpha = float(scale*new_rank)
new_alpha = float(scale * new_rank)
elif new_rank > rank: # cap max rank at rank
new_rank = rank
new_alpha = float(scale*new_rank)
new_alpha = float(scale * new_rank)

# Calculate resize info
s_sum = torch.sum(torch.abs(S))
Expand Down Expand Up @@ -200,19 +204,21 @@ def resize_lora_model(lora_sd, new_rank, new_conv_rank, save_dtype, device, dyna

# Extract loaded lora dim and alpha
for key, value in lora_sd.items():
if network_alpha is None and 'alpha' in key:
if network_alpha is None and "alpha" in key:
network_alpha = value
if network_dim is None and 'lora_down' in key and len(value.size()) == 2:
if network_dim is None and "lora_down" in key and len(value.size()) == 2:
network_dim = value.size()[0]
if network_alpha is not None and network_dim is not None:
break
if network_alpha is None:
network_alpha = network_dim

scale = network_alpha/network_dim
scale = network_alpha / network_dim

if dynamic_method:
logger.info(f"Dynamically determining new alphas and dims based off {dynamic_method}: {dynamic_param}, max rank is {new_rank}")
logger.info(
f"Dynamically determining new alphas and dims based off {dynamic_method}: {dynamic_param}, max rank is {new_rank}"
)

lora_down_weight = None
lora_up_weight = None
Expand All @@ -224,27 +230,27 @@ def resize_lora_model(lora_sd, new_rank, new_conv_rank, save_dtype, device, dyna
with torch.no_grad():
for key, value in tqdm(lora_sd.items()):
weight_name = None
if 'lora_down' in key:
block_down_name = key.rsplit('.lora_down', 1)[0]
if "lora_down" in key:
block_down_name = key.rsplit(".lora_down", 1)[0]
weight_name = key.rsplit(".", 1)[-1]
lora_down_weight = value
else:
continue

# find corresponding lora_up and alpha
block_up_name = block_down_name
lora_up_weight = lora_sd.get(block_up_name + '.lora_up.' + weight_name, None)
lora_alpha = lora_sd.get(block_down_name + '.alpha', None)
lora_up_weight = lora_sd.get(block_up_name + ".lora_up." + weight_name, None)
lora_alpha = lora_sd.get(block_down_name + ".alpha", None)

weights_loaded = (lora_down_weight is not None and lora_up_weight is not None)
weights_loaded = lora_down_weight is not None and lora_up_weight is not None

if weights_loaded:

conv2d = (len(lora_down_weight.size()) == 4)
conv2d = len(lora_down_weight.size()) == 4
if lora_alpha is None:
scale = 1.0
else:
scale = lora_alpha/lora_down_weight.size()[0]
scale = lora_alpha / lora_down_weight.size()[0]

if conv2d:
full_weight_matrix = merge_conv(lora_down_weight, lora_up_weight, device)
Expand All @@ -254,24 +260,26 @@ def resize_lora_model(lora_sd, new_rank, new_conv_rank, save_dtype, device, dyna
param_dict = extract_linear(full_weight_matrix, new_rank, dynamic_method, dynamic_param, device, scale)

if verbose:
max_ratio = param_dict['max_ratio']
sum_retained = param_dict['sum_retained']
fro_retained = param_dict['fro_retained']
max_ratio = param_dict["max_ratio"]
sum_retained = param_dict["sum_retained"]
fro_retained = param_dict["fro_retained"]
if not np.isnan(fro_retained):
fro_list.append(float(fro_retained))

verbose_str += f"{block_down_name:75} | "
verbose_str += f"sum(S) retained: {sum_retained:.1%}, fro retained: {fro_retained:.1%}, max(S) ratio: {max_ratio:0.1f}"
verbose_str += (
f"sum(S) retained: {sum_retained:.1%}, fro retained: {fro_retained:.1%}, max(S) ratio: {max_ratio:0.1f}"
)

if verbose and dynamic_method:
verbose_str += f", dynamic | dim: {param_dict['new_rank']}, alpha: {param_dict['new_alpha']}\n"
else:
verbose_str += "\n"

new_alpha = param_dict['new_alpha']
new_alpha = param_dict["new_alpha"]
o_lora_sd[block_down_name + "." + "lora_down.weight"] = param_dict["lora_down"].to(save_dtype).contiguous()
o_lora_sd[block_up_name + "." + "lora_up.weight"] = param_dict["lora_up"].to(save_dtype).contiguous()
o_lora_sd[block_up_name + "." "alpha"] = torch.tensor(param_dict['new_alpha']).to(save_dtype)
o_lora_sd[block_up_name + "." "alpha"] = torch.tensor(param_dict["new_alpha"]).to(save_dtype)

block_down_name = None
block_up_name = None
Expand All @@ -281,38 +289,36 @@ def resize_lora_model(lora_sd, new_rank, new_conv_rank, save_dtype, device, dyna
del param_dict

if verbose:
logger.info(verbose_str)

logger.info(f"Average Frobenius norm retention: {np.mean(fro_list):.2%} | std: {np.std(fro_list):0.3f}")
print(verbose_str)
print(f"Average Frobenius norm retention: {np.mean(fro_list):.2%} | std: {np.std(fro_list):0.3f}")
logger.info("resizing complete")
return o_lora_sd, network_dim, new_alpha


def resize(args):
if (
args.save_to is None or
not (args.save_to.endswith('.ckpt') or
args.save_to.endswith('.pt') or
args.save_to.endswith('.pth') or
args.save_to.endswith('.safetensors'))
):
if args.save_to is None or not (
args.save_to.endswith(".ckpt")
or args.save_to.endswith(".pt")
or args.save_to.endswith(".pth")
or args.save_to.endswith(".safetensors")
):
raise Exception("The --save_to argument must be specified and must be a .ckpt , .pt, .pth or .safetensors file.")

args.new_conv_rank = args.new_conv_rank if args.new_conv_rank is not None else args.new_rank

def str_to_dtype(p):
if p == 'float':
if p == "float":
return torch.float
if p == 'fp16':
if p == "fp16":
return torch.float16
if p == 'bf16':
if p == "bf16":
return torch.bfloat16
return None

if args.dynamic_method and not args.dynamic_param:
raise Exception("If using dynamic_method, then dynamic_param is required")

merge_dtype = str_to_dtype('float') # matmul method above only seems to work in float32
merge_dtype = str_to_dtype("float") # matmul method above only seems to work in float32
save_dtype = str_to_dtype(args.save_precision)
if save_dtype is None:
save_dtype = merge_dtype
Expand All @@ -321,7 +327,9 @@ def str_to_dtype(p):
lora_sd, metadata = load_state_dict(args.model, merge_dtype)

logger.info("Resizing Lora...")
state_dict, old_dim, new_alpha = resize_lora_model(lora_sd, args.new_rank, args.new_conv_rank, save_dtype, args.device, args.dynamic_method, args.dynamic_param, args.verbose)
state_dict, old_dim, new_alpha = resize_lora_model(
lora_sd, args.new_rank, args.new_conv_rank, save_dtype, args.device, args.dynamic_method, args.dynamic_param, args.verbose
)

# update metadata
if metadata is None:
Expand All @@ -330,47 +338,73 @@ def str_to_dtype(p):
comment = metadata.get("ss_training_comment", "")

if not args.dynamic_method:
metadata["ss_training_comment"] = f"dimension is resized from {old_dim} to {args.new_rank}; {comment}"
conv_desc = "" if args.new_rank == args.new_conv_rank else f" (conv: {args.new_conv_rank})"
metadata["ss_training_comment"] = f"dimension is resized from {old_dim} to {args.new_rank}{conv_desc}; {comment}"
metadata["ss_network_dim"] = str(args.new_rank)
metadata["ss_network_alpha"] = str(new_alpha)
else:
metadata["ss_training_comment"] = f"Dynamic resize with {args.dynamic_method}: {args.dynamic_param} from {old_dim}; {comment}"
metadata["ss_network_dim"] = 'Dynamic'
metadata["ss_network_alpha"] = 'Dynamic'
metadata["ss_training_comment"] = (
f"Dynamic resize with {args.dynamic_method}: {args.dynamic_param} from {old_dim}; {comment}"
)
metadata["ss_network_dim"] = "Dynamic"
metadata["ss_network_alpha"] = "Dynamic"

model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash

logger.info(f"saving model to: {args.save_to}")
save_to_file(args.save_to, state_dict, state_dict, save_dtype, metadata)
save_to_file(args.save_to, state_dict, save_dtype, metadata)


def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()

parser.add_argument("--save_precision", type=str, default=None,
choices=[None, "float", "fp16", "bf16"], help="precision in saving, float if omitted / 保存時の精度、未指定時はfloat")
parser.add_argument("--new_rank", type=int, default=4,
help="Specify rank of output LoRA / 出力するLoRAのrank (dim)")
parser.add_argument("--new_conv_rank", type=int, default=None,
help="Specify rank of output LoRA for Conv2d 3x3, None for same as new_rank / 出力するConv2D 3x3 LoRAのrank (dim)、Noneでnew_rankと同じ")
parser.add_argument("--save_to", type=str, default=None,
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors")
parser.add_argument("--model", type=str, default=None,
help="LoRA model to resize at to new rank: ckpt or safetensors file / 読み込むLoRAモデル、ckptまたはsafetensors")
parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う")
parser.add_argument("--verbose", action="store_true",
help="Display verbose resizing information / rank変更時の詳細情報を出力する")
parser.add_argument("--dynamic_method", type=str, default=None, choices=[None, "sv_ratio", "sv_fro", "sv_cumulative"],
help="Specify dynamic resizing method, --new_rank is used as a hard limit for max rank")
parser.add_argument("--dynamic_param", type=float, default=None,
help="Specify target for dynamic reduction")
parser.add_argument(
"--save_precision",
type=str,
default=None,
choices=[None, "float", "fp16", "bf16"],
help="precision in saving, float if omitted / 保存時の精度、未指定時はfloat",
)
parser.add_argument("--new_rank", type=int, default=4, help="Specify rank of output LoRA / 出力するLoRAのrank (dim)")
parser.add_argument(
"--new_conv_rank",
type=int,
default=None,
help="Specify rank of output LoRA for Conv2d 3x3, None for same as new_rank / 出力するConv2D 3x3 LoRAのrank (dim)、Noneでnew_rankと同じ",
)
parser.add_argument(
"--save_to",
type=str,
default=None,
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors",
)
parser.add_argument(
"--model",
type=str,
default=None,
help="LoRA model to resize at to new rank: ckpt or safetensors file / 読み込むLoRAモデル、ckptまたはsafetensors",
)
parser.add_argument(
"--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う"
)
parser.add_argument(
"--verbose", action="store_true", help="Display verbose resizing information / rank変更時の詳細情報を出力する"
)
parser.add_argument(
"--dynamic_method",
type=str,
default=None,
choices=[None, "sv_ratio", "sv_fro", "sv_cumulative"],
help="Specify dynamic resizing method, --new_rank is used as a hard limit for max rank",
)
parser.add_argument("--dynamic_param", type=float, default=None, help="Specify target for dynamic reduction")

return parser

if __name__ == '__main__':

if __name__ == "__main__":
parser = setup_parser()

args = parser.parse_args()
Expand Down

0 comments on commit 52b3799

Please sign in to comment.