lightnet is a turnkey solution to real world problems accelerated with deep learning AI technology, including but not limited to object detection, image classification and human pose estimation.
- The source code
- Build instructions
- End2end Object Detection
- End2end Image Classification
- Human Pose Estimation
- FAQ
This project is dependent on a few open-source projects:
- modules/darknet - the main engine for training & inferencing.
- modules/Yolo_mark - the toolkit to prepare training data for object detection.
- modules/yolo2_light - lightweighted inferencing engine [optional].
- modules/cvui - lightweighted GUI based purely on OpenCV.
- moudles/pytorch-caffe-darknet-convert - DL framework model converter
- modules/minitrace - library to generate tracing logs for Chrome "about:tracing"
- modules/readerwriterqueue - single-producer, single-consumer lock-free queue for C++
- modules/bhtsne - Barnes-Hut implementation of the t-SNE algorithm
-
Download CUDA 10.0
-
Download [cuDNN v7.x] (https://developer.nvidia.com/rdp/cudnn-download)
- Extract to the same folder as CUDA SDK
- e.g.
c:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\
- Latest OpenCV: e.g. https://github.com/opencv/opencv/releases/tag/4.1.1
- Extract to
d:\opencv\
Execute the batch file
build.bat
First you need to download the weights. You can read more details on darknet website.
cfg | weights | names |
---|---|---|
cfg/yolov2.cfg | https://pjreddie.com/media/files/yolov2.weights | data/coco.names |
cfg/yolov2-tiny.cfg | https://pjreddie.com/media/files/yolov2-tiny.weights | coco.names |
cfg/yolo9000.cfg | http://pjreddie.com/media/files/yolo9000.weights | cfg/9k.names |
cfg/yolov3.cfg | https://pjreddie.com/media/files/yolov3.weights | cfg/coco.names |
cfg/yolov3-openimages.cfg | https://pjreddie.com/media/files/yolov3-openimages.weights | data/openimages.names |
cfg/yolov3-tiny.cfg | https://pjreddie.com/media/files/yolov3-tiny.weights | cfg/coco.names |
cfg/yolov2_shoe.cfg | yolov2_shoe.weights | obj.names |
darknet.exe detector demo <data> <cfg> <weights> -c <camera_idx> -i <gpu_idx>
darknet.exe detector demo <data> <cfg> <weights> <video_filename> -i <gpu_idx>
darknet.exe detector test <data> <cfg> <weights> <img_filename> -i <gpu_idx>
Default launch device combination is -i 0 -c 0
.
darknet.exe detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights
darknet.exe detector demo cfg/combine9k.data cfg/yolo9000.cfg yolo9000.weights
darknet.exe detector test cfg/combine9k.data cfg/yolo9000.cfg yolo9000.weights
darknet_no_gpu.exe detector demo cfg/combine9k.data cfg/yolo9000.cfg yolo9000.weights
- delete all files from directory
my-yolo-net/img
and put your.jpg
-images in - change numer of classes (objects for detection) in file
my-yolo-net/obj.data
: https://github.com/jing-vision/yolo-studio/blob/master/networks/yolo-template/obj.data#L1 - put names of objects, one for each line in file
my-yolo-net/obj.names
: https://github.com/jing-vision/yolo-studio/blob/master/networks/yolo-template/obj.names - Run file:
my-yolo-net/yolo_mark.cmd
-
Fork
__template-yolov2
tomy-yolo-net
-
Download pre-trained weights for the convolutional layers: http://pjreddie.com/media/files/darknet19_448.conv.23 to
bin/darknet19_448.conv.23
-
To training for your custom objects, you should change 2 lines in file
obj.cfg
:
- change
classes
in obj.data#L1 - set number of classes (objects) in obj.cfg#L230
- set
filter
-value equal to(classes + 5)*5
in obj.cfg#L224
- Run
my-yolo-net/train.cmd
-
Fork
__template-yolov3
tomy-yolo-net
-
Download pre-trained weights for the convolutional layers: http://pjreddie.com/media/files/darknet53.conv.74 to
bin/darknet53.conv.74
-
Create file
obj.cfg
with the same content as inyolov3.cfg
(or copyyolov3.cfg
toobj.cfg)
and:
- change line batch to
batch=64
- change line subdivisions to
subdivisions=8
- change line
classes=80
to your number of objects in each of 3[yolo]
-layers:- obj.cfg#L610
- obj.cfg#L696
- obj.cfg#L783
- change [
filters=255
] to filters=(classes + 5)x3 in the 3[convolutional]
before each[yolo]
layer- obj.cfg#L603
- obj.cfg#L689
- obj.cfg#L776
So if classes=1
then should be filters=18
. If classes=2
then write filters=21
.
(Do not write in the cfg-file: filters=(classes + 5)x3)
(Generally filters
depends on the classes
, coords
and number of mask
s, i.e. filters=(classes + coords + 1)*<number of mask>
, where mask
is indices of anchors. If mask
is absence, then filters=(classes + coords + 1)*num
)
So for example, for 2 objects, your file obj.cfg
should differ from yolov3.cfg
in such lines in each of 3 [yolo]-layers:
[convolutional]
filters=21
[region]
classes=2
Again, you need download weights first. You can read more details on darknet website.
cfg | weights |
---|---|
cfg/alexnet.cfg | https://pjreddie.com/media/files/alexnet.weights |
cfg/vgg-16.cfg | https://pjreddie.com/media/files/vgg-16.weights |
cfg/extraction.cfg | https://pjreddie.com/media/files/extraction.weights |
cfg/darknet.cfg | https://pjreddie.com/media/files/darknet.weights |
cfg/darknet19.cfg | https://pjreddie.com/media/files/darknet19.weights |
cfg/darknet19_448.cfg | https://pjreddie.com/media/files/darknet19_448.weights |
cfg/darknet53.cfg | https://pjreddie.com/media/files/darknet53.weights |
cfg/resnet50.cfg | https://pjreddie.com/media/files/resnet50.weights |
cfg/resnet152.cfg | https://pjreddie.com/media/files/resnet152.weights |
cfg/densenet201.cfg | https://pjreddie.com/media/files/densenet201.weights |
-
Fork
__template-darknet19_448
tomy-darknet19-net
-
Download pre-trained weights for the convolutional layers: http://pjreddie.com/media/files/darknet19_448.conv.23 to
bin/darknet19_448.conv.23
-
Create file
obj.cfg
with the same content as indarknet19_448.cfg
(or copydarknet19_448.cfg
toobj.cfg)
and:
- set
batch
to128
or64
or32
depends on your GPU memory in darknet19-classify.cfg#L4 - change line to
subdivisions=4
- set
filter
-value equal toclasses
in darknet19-classify.cfg#L189
This project lives in DancingGaga
For more details, please check the README there.
[Weight file] (darknet version openpose.weight)
https://drive.google.com/open?id=1BfY0Hx2d2nm3I4JFh0W1cK2aHD1FSGea
AlexeyAB/darknet#232 (comment)
# Tesla V100
# ARCH= -gencode arch=compute_70,code=[sm_70,compute_70]
# GeForce RTX 2080 Ti, RTX 2080, RTX 2070, Quadro RTX 8000, Quadro RTX 6000, Quadro RTX 5000, Tesla T4, XNOR Tensor Cores
# ARCH= -gencode arch=compute_75,code=[sm_75,compute_75]
# Jetson XAVIER
# ARCH= -gencode arch=compute_72,code=[sm_72,compute_72]
# GTX 1080, GTX 1070, GTX 1060, GTX 1050, GTX 1030, Titan Xp, Tesla P40, Tesla P4
# ARCH= -gencode arch=compute_61,code=sm_61 -gencode arch=compute_61,code=compute_61
# GP100/Tesla P100 - DGX-1
# ARCH= -gencode arch=compute_60,code=sm_60
# For Jetson TX1, Tegra X1, DRIVE CX, DRIVE PX - uncomment:
# ARCH= -gencode arch=compute_53,code=[sm_53,compute_53]
# For Jetson Tx2 or Drive-PX2 uncomment:
# ARCH= -gencode arch=compute_62,code=[sm_62,compute_62]
https://github.com/pjreddie/darknet/wiki/YOLO:-Real-Time-Object-Detection
darknet.exe partial cfg/darknet.cfg darknet.weights darknet.conv.13 13 darknet.exe partial cfg/extraction.cfg extraction.weights extraction.conv.23 23 darknet.exe partial cfg/darknet19.cfg darknet19.weights darknet19.conv.23 23 darknet.exe partial cfg/darknet19_448.cfg darknet19_448.weights darknet19_448.conv.23 23 darknet.exe partial cfg/darknet53.cfg darknet53.weights darknet53.conv.74 74 darknet.exe partial cfg/resnet50.cfg resnet50.weights resnet50.conv.66 66
https://github.com/rafaelpadilla/darknet#faq_yolo
pip install -r scripts/requirements.txt