Skip to content

wjj5881005/mwb_deeplog

 
 

Repository files navigation

训练:train_lstm.py

输入文件:
	train_log_sequence.txt  格式: timestamp + tag
输出文件:
	template_to_int.txt
	weights/weights-improvement-**-**-bigger.hdf5 有多个文件,选择一个loss值最小的文件,其他可以删掉

检测:detect_lstm.py

输入文件:
	template_to_int.txt  是训练文件生成的
	test_log_sequence.txt  格式: timestamp + tag
	labels.txt   用于评价准确率
	weights/weights-improvement-**-**-bigger.hdf5 loss值最小的文件

输出说明:
	例如:anomaly detection result:
	next tag  is not in top1 candidates:
	# of anomalous/total logs: 963/1990
	Precision:  0.131880, Recall: 0.900709, F1_score: 0.230072
	# of anomalous/total windows: 349/5096
	Precision:  0.108883, Recall: 0.826087, F1_score: 0.192405

	next tag  is not in top2 candidates:
	# of anomalous/total logs: 639/1990
	Precision:  0.184664, Recall: 0.836879, F1_score: 0.302564
	# of anomalous/total windows: 285/5096
	Precision:  0.122807, Recall: 0.760870, F1_score: 0.211480

	next tag  is not in top3 candidates:
	# of anomalous/total logs: 387/1990
	Precision:  0.108527, Recall: 0.297872, F1_score: 0.159091
	# of anomalous/total windows: 229/5096
	Precision:  0.113537, Recall: 0.565217, F1_score: 0.189091

	top1,top2指的是当下一个tag不是预测概率最大的topn时,认为该点为异常。
	logs和windows分别表示的是日志级和窗口级的异常。

本代码是我根据自己的理解,复现自Du M, Li F, Zheng G, et al. DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning[C]// ACM Sigsac Conference on Computer and Communications Security. ACM, 2017:1285-1298.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 96.0%
  • Shell 4.0%