Skip to content

VALORA (Versatile Agent Logic for Orchestrated Response Architecture) - The future of software development is not about replacing developers, but amplifying their capabilities with intelligent AI collaboration

Notifications You must be signed in to change notification settings

windagency/valora.ai

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

10 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

VALORA

VALORA

The future of software development is not about replacing developers, but amplifying their capabilities with intelligent AI collaboration.

Features β€’ Quick Start β€’ Architecture β€’ Commands β€’ Documentation

Version Node TypeScript License

Anthropic OpenAI Google Cursor


πŸ›οΈ About VALORA

VALORA (Versatile Agent Logic for Orchestrated Response Architecture) is a next-generation TypeScript-based platform designed to orchestrate a sophisticated network of AI agents to automate the complete software development lifecycle. By moving beyond simple "code generation", VALORA manages the delicate interplay between requirements, architecture, and deployment. VALORA provides intelligent automation while maintaining human oversight.

Why VALORA?

Intelligent Orchestration: VALORA coordinates 11 specialised AI agents, from @lead technical oversight to @secops-engineer compliance, ensuring the right expert is assigned to every task.

Three-Tier Flexibility: The engine adapts to your resources, offering MCP Sampling, Guided Completion, or API Fallback modes.

Phased Governance: Every project follows a rigorous 8-phase lifecycle, moving from initialisation and planning through implementation to validation and PR creation.

Strategic Optimisation: To balance depth and speed, VALORA assigns specific LLMs (like GPT-5 for planning or Claude Haiku for validation) based on the task's complexity.

VALORA is not a replacement for the developer; it is the high-fidelity instrument through which the developer conducts a full symphony of AI agents.

✨ Features

πŸ€– Multi-Agent Collaboration

11 specialised AI agents with distinct expertise:

  • @lead β€” Technical oversight & architecture
  • @product-manager β€” Requirements & prioritisation
  • @software-engineer-* β€” Implementation specialists
  • @platform-engineer β€” Infrastructure & DevOps
  • @qa β€” Testing & quality assurance
  • @secops-engineer β€” Security & compliance
  • @ui-ux-designer β€” Design & accessibility

⚑ Three-Tier Execution

Flexible execution modes for every use case:

Tier Mode Cost
1 MCP Sampling Free*
2 Guided Completion Free
3 API Fallback Pay-per-use

*When available in Cursor

Zero configuration required β€” works immediately with your Cursor subscription.

πŸ”„ 8-Phase Development Lifecycle

Complete workflow automation:

Initialisation β†’ Task Prep β†’ Planning
      ↓
Implementation β†’ Validation β†’ Review
      ↓
Commit & PR β†’ Feedback Loop

Each phase has dedicated commands and agents optimised for the task.

πŸ’Ž Model Optimisation

Strategic AI model assignment for cost efficiency:

Model Use Case
GPT-5 Thinking Deep analysis, planning
Claude Sonnet Implementation, reviews
Claude Haiku Fast tasks, validation

31% strategic β€’ 31% execution β€’ 38% fast

πŸ”Œ External MCP Integration

Connect to 15 external MCP servers with user approval:

Category Servers
Browser/Test Playwright, Chrome DevTools, BrowserStack
Design Figma, Storybook
Development GitHub, Serena, Context7
Infrastructure Terraform, Firebase, Google Cloud
Data MongoDB, Elastic
Observability Grafana, DeepResearch

πŸ”’ Security & Compliance

Enterprise-grade security controls:

  • User Approval Flow β€” Interactive consent before connections
  • Risk Assessment β€” Low/Medium/High/Critical classification
  • Tool Filtering β€” Allowlist and blocklist per server
  • Audit Logging β€” Complete operation trail
  • Session Caching β€” Remember approvals per session

πŸš€ Quick Start

Prerequisites

  • Docker
  • ou
    • Node.js 20+
    • pnpm 10.x

Installation

# Navigate to the engine directory
cd .ai/.bin

# Install dependencies
pnpm install

# Build the project
pnpm build

# Install globally
pnpm link

# Verify installation
valora --version

Your First Command

# Create an implementation plan
valora plan "Add user authentication with OAuth"

The engine will:

  1. Select the appropriate agent (@lead)
  2. Gather codebase context
  3. Generate a detailed implementation plan
  4. Provide step-by-step guidance

Zero-Config Usage with Cursor subscription

No API keys? No problem. The engine works immediately using Guided Completion Mode:

valora plan "Add dark mode toggle"
# β†’ Generates structured prompt for Cursor AI
# β†’ Uses your Cursor subscription (free)

Optional: API Configuration

For fully autonomous execution:

valora config setup --quick

# Or set environment variables
export ANTHROPIC_API_KEY=sk-ant-...
export OPENAI_API_KEY=sk-...

πŸ—οΈ Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                                 VALORA                                  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                                         β”‚
β”‚   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚   β”‚ CLI Layer   β”‚  β”‚ Orchestrator β”‚  β”‚ Agent Layer β”‚  β”‚ LLM Layer   β”‚   β”‚
β”‚   β”‚             │──│              │──│             │──│             β”‚   β”‚
β”‚   β”‚ β€’ Commands  β”‚  β”‚ β€’ Pipeline   β”‚  β”‚ β€’ Registry  β”‚  β”‚ β€’ Anthropic β”‚   β”‚
β”‚   β”‚ β€’ Wizard    β”‚  β”‚ β€’ Executor   β”‚  β”‚ β€’ Selection β”‚  β”‚ β€’ OpenAI    β”‚   β”‚
β”‚   β”‚ β€’ Output    β”‚  β”‚ β€’ Context    β”‚  β”‚ β€’ Loading   β”‚  β”‚ β€’ Google    β”‚   β”‚
β”‚   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚                                                                         β”‚
β”‚   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚   β”‚ Session     β”‚  β”‚ Config       β”‚  β”‚ MCP         β”‚  β”‚ Services    β”‚   β”‚
β”‚   β”‚             β”‚  β”‚              β”‚  β”‚             β”‚  β”‚             β”‚   β”‚
β”‚   β”‚ β€’ State     β”‚  β”‚ β€’ Loader     β”‚  β”‚ β€’ Server    β”‚  β”‚ β€’ Logging   β”‚   β”‚
β”‚   β”‚ β€’ Context   β”‚  β”‚ β€’ Schema     β”‚  β”‚ β€’ Tools     β”‚  β”‚ β€’ Cleanup   β”‚   β”‚
β”‚   β”‚ β€’ History   β”‚  β”‚ β€’ Providers  β”‚  β”‚ β€’ Prompts   β”‚  β”‚ β€’ Utils     β”‚   β”‚
β”‚   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚                                                                         β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Key Design Principles

Principle Implementation
Modularity Loosely coupled components with clear interfaces
Extensibility Plugin architecture for agents, commands, providers
Testability Comprehensive test suites (unit, integration, e2e)
Observability Structured logging and session tracking
Resilience Graceful fallbacks and error recovery

πŸ“‹ Commands

Complete Command Reference

Command Agent Description
refine-specs @product-manager Collaboratively refine specifications
create-prd @product-manager Generate Product Requirements Document
create-backlog @product-manager Decompose PRD into tasks
fetch-task @product-manager Retrieve next priority task
refine-task @product-manager Clarify task requirements
gather-knowledge @lead Analyse codebase context
plan @lead Create implementation plan
review-plan @lead Validate plan quality
implement Dynamic Execute code changes
assert @asserter Validate implementation
test @qa Execute test suites
review-code @lead Code quality review
review-functional @lead Functional review
commit @lead Create conventional commits
create-pr @lead Generate pull request
feedback @product-manager Capture outcomes

Command Categories

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Planning            β”‚  β”‚ Implementation      β”‚  β”‚ Delivery            β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€  β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€  β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β€’ refine-specs      β”‚  β”‚ β€’ implement         β”‚  β”‚ β€’ commit            β”‚
β”‚ β€’ create-prd        β”‚  β”‚ β€’ assert            β”‚  β”‚ β€’ create-pr         β”‚
β”‚ β€’ plan              β”‚  β”‚ β€’ test              β”‚  β”‚ β€’ feedback          β”‚
β”‚ β€’ review-plan       β”‚  β”‚ β€’ review-code       β”‚  β”‚                     β”‚
β”‚ β€’ gather-knowledge  β”‚  β”‚ β€’ review-functional β”‚  β”‚                     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ“š Documentation

πŸ‘€ User Guide

Getting started, workflows,
and daily usage

User Guide

πŸ’» Developer Guide

Architecture, codebase,
and contributions

Developer Guide

πŸ›οΈ Architecture

System design
and decisions

Architecture

Documentation Structure

documentation/
β”œβ”€β”€ README.md                    # Documentation entry point
β”œβ”€β”€ user-guide/                  # For users
β”‚   β”œβ”€β”€ quick-start.md           # 5-minute getting started
β”‚   β”œβ”€β”€ workflows.md             # Common patterns
β”‚   └── commands.md              # Command reference
β”œβ”€β”€ developer-guide/             # For developers
β”‚   β”œβ”€β”€ setup.md                 # Development environment
β”‚   β”œβ”€β”€ codebase.md              # Code structure
β”‚   └── contributing.md          # How to contribute
β”œβ”€β”€ architecture/                # For architects
β”‚   β”œβ”€β”€ system-architecture.md   # C4 diagrams
β”‚   β”œβ”€β”€ components.md            # Component design
β”‚   └── data-flow.md             # Data flow patterns
└── adr/                         # Decision records
    β”œβ”€β”€ 001-multi-agent-architecture.md
    β”œβ”€β”€ 002-three-tier-execution.md
    β”œβ”€β”€ 003-session-based-state.md
    β”œβ”€β”€ 004-pipeline-execution-model.md
    └── 005-llm-provider-abstraction.md

🎯 Use Cases

New Feature Development

valora refine-specs "User authentication with OAuth"
valora create-prd
valora create-backlog
valora fetch-task && valora plan
valora implement
valora review-code && valora commit
valora create-pr

Bug Fix Workflow

valora plan "Fix: Login timeout issue"
valora implement
valora test --type=all
valora commit --scope=fix

Code Review

valora review-code --focus=security
valora review-functional --check-a11y=true

πŸ”§ Project Structure

.ai/
β”œβ”€β”€ .bin/                        # TypeScript implementation
β”‚   β”œβ”€β”€ dist/                    # Built artefacts
β”‚   β”œβ”€β”€ src/                     # Source code
β”‚   └── tests/                   # Test suites
β”œβ”€β”€ agents/                      # Agent definitions (11 agents)
β”‚   β”œβ”€β”€ registry.json            # Agent definitions
β”‚   β”œβ”€β”€ lead.md
β”‚   β”œβ”€β”€ product-manager.md
β”‚   β”œβ”€β”€ software-engineer-*.md
β”‚   └── ...
β”œβ”€β”€ commands/                    # Command specifications (16 commands)
β”‚   β”œβ”€β”€ registry.json            # Command definitions
β”‚   β”œβ”€β”€ implement.md
β”‚   β”œβ”€β”€ plan.md
β”‚   └── ...
β”œβ”€β”€ documentation/               # Comprehensive docs
β”œβ”€β”€ external-mcp.json            # External MCP server registry
β”œβ”€β”€ logs/                        # Execution logs
β”œβ”€β”€ prompts/                     # Structured prompts by phase
β”‚   β”œβ”€β”€ 01_onboard/
β”‚   β”œβ”€β”€ 02_context/
β”‚   β”œβ”€β”€ 03_plan/
β”‚   └── ...
β”œβ”€β”€ sessions/                    # Persistent session state
β”œβ”€β”€ templates/                   # Document templates
└── config.json                  # Engine configuration

🌟 Why VALORA?

Traditional Development

  • ❌ Context switching between tools
  • ❌ Manual documentation
  • ❌ Inconsistent code reviews
  • ❌ Repetitive commit messages
  • ❌ Time-consuming PR creation

With AI Orchestration

  • βœ… Unified workflow automation
  • βœ… Auto-generated documentation
  • βœ… Comprehensive AI-powered reviews
  • βœ… Intelligent commit messages
  • βœ… One-command PR creation

Innovation Highlights

Innovation Impact
Multi-Agent Orchestration Specialised agents produce expert-level output
Three-Tier Execution Flexibility from free to fully automated
Session Persistence Context flows naturally between commands
Dynamic Agent Selection Right expert for every task
Quality Gates Multiple checkpoints prevent technical debt

🚧 Future Improvements

There are still many improvements to be made. Contributions and suggestions are welcome!

Token & Context Management

  • Reducing prompt sizes for efficiency
  • Memory management optimisation
  • Distributing context window occupancy across agents

Metrics & Observability

  • Token usage tracking per agent/command
  • Execution time metrics
  • Cost analysis dashboards

UI & CLI Experience

  • Buffer management improvements
  • Animations and visual feedback
  • Making the CLI fully autonomous
  • Enhanced progress indicators

Agent & Command System

  • Ability to add custom agents dynamically
  • Override existing agent behaviours
  • Plugin system for third-party commands
  • Hot-reload for agent definitions

Have ideas or suggestions? Contributions are welcome!


πŸ› οΈ Technology Stack

Category Technologies
Runtime Node.js 18+, TypeScript 5.x
Package Manager pnpm 10.x
Build tsc, tsc-alias
Testing Vitest, Playwright
LLM SDKs @anthropic-ai/sdk, openai, @google/generative-valora
CLI UI Ink (React), Chalk, Commander
Validation Zod
MCP @modelcontextprotocol/sdk

πŸ“„ Licence

MIT Β© Damien TIVELET


Get Started β€’ Contribute β€’ Learn More

About

VALORA (Versatile Agent Logic for Orchestrated Response Architecture) - The future of software development is not about replacing developers, but amplifying their capabilities with intelligent AI collaboration

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published