Karma Engine for HUGO369 Intent-Holographic Computer
A complete, production-ready implementation of the Karma Engine (K-Engine) for the HUGO369 Intent-Holographic Computer architecture. This repository contains the core algorithms, validation systems, and reference implementations.
The K-Engine is the computational heart of HUGO369, managing the alignment coefficient (K) and energy flow through the 3-6-9 geometric structure. It provides:
- Alignment Coefficient Calculation: Computes K values based on intent-logic-karma vector alignment
- Impedance Management: Calculates system impedance as Z = K² × Z₀
- Energy Efficiency Metrics: Tracks η = 1 - K for system performance
- Karma Density Constraints: Implements hardware-level AI safety through karma density limits
- State Management: Maintains complete system state history for analysis
✅ Production-Ready Implementation
- Fully functional K-Engine core
- Comprehensive validation system
- Extensive test coverage
✅ Mathematical Rigor
- Implements HUGO369 theoretical framework
- Numerical stability verified
- Validated against theoretical predictions
✅ Easy Integration
- Clean Python API
- Well-documented code
- Example implementations included
- Python 3.8+
- NumPy
git clone https://github.com/wenchyuan/k-engine.git
cd k-engine
pip install -r requirements.txtfrom src.core.karma_engine import KarmaEngine, KarmaVector
# Create K-Engine instance
engine = KarmaEngine(initial_alignment=0.5)
# Define intent, logic, and karma vectors
intent = KarmaVector(1.0, 0.0, 0.0)
logic = KarmaVector(0.0, 1.0, 0.0)
karma = KarmaVector(0.0, 0.0, 1.0)
# Calculate alignment coefficient
K = engine.calculate_alignment_coefficient(intent, logic, karma)
# Get system metrics
metrics = engine.get_metrics()
print(f"Alignment Coefficient K: {metrics['K']:.4f}")
print(f"Impedance: {metrics['impedance']:.2f} Ω")
print(f"Efficiency: {metrics['efficiency']:.2%}")from src.validation.validator import validate_engine
# Run full validation suite
summary = validate_engine(engine)
print(f"Validation: {summary['passed']}/{summary['total_tests']} tests passed")The alignment coefficient measures how well the intent, logic, and karma layers are aligned:
- K ≈ 0: Perfect alignment (superconducting state)
- K ≈ 0.5: Nominal operation
- K ≈ 1.0: Maximum misalignment (chaotic state)
Formula: K = 1 - |ψ_i · ψ_l · ψ_k| / (|ψ_i| × |ψ_l| × |ψ_k|)
System impedance increases with misalignment:
Z = K² × Z₀ (where Z₀ = 377 Ω)
Efficiency is inversely proportional to misalignment:
η = 1 - K
Higher karma density physically limits output power:
P_out = P_in × (1 - ρ_k / ρ_k_max)
This provides hardware-level AI safety without relying on software alignment.
k-engine/
├── src/
│ ├── core/
│ │ └── karma_engine.py # Core K-Engine implementation
│ ├── validation/
│ │ └── validator.py # Validation system
│ └── utils/
│ └── helpers.py # Utility functions
├── tests/
│ └── test_karma_engine.py # Unit tests
├── examples/
│ └── basic_usage.py # Example usage
├── docs/
│ └── API.md # API documentation
└── README.md
Run the test suite:
python -m unittest tests.test_karma_engine -vMain class for K-Engine operations.
calculate_alignment_coefficient(intent, logic, karma): Calculate K valuecalculate_impedance(K): Calculate system impedancecalculate_energy_efficiency(K): Calculate efficiencycalculate_karma_density(energy, volume): Calculate karma densitycalculate_output_power(input_power, karma_density, max_density): Calculate constrained outputupdate_state(intent, logic, karma, input_energy): Update system stateget_alignment_state(): Get current alignment classificationget_metrics(): Get current system metricsreset(initial_alignment): Reset to initial state
Represents a vector in 3D intent-holographic space.
magnitude(): Calculate vector magnitudenormalize(): Return normalized vectordot(other): Calculate dot product
Validation system for K-Engine calculations.
run_full_validation(engine): Run all validation testsprint_report(): Print formatted validation report
See examples/ directory for complete examples:
basic_usage.py: Basic K-Engine operationsalignment_simulation.py: Alignment scenariosvalidation_example.py: Running validation tests
- Alignment calculation: < 1 ms
- Full validation suite: < 10 ms
- Memory footprint: < 1 MB
This project is licensed under the Non-Commercial MIT License.
See LICENSE for details. Commercial use requires explicit written permission.
Contact for commercial licensing: wenchyuan333@icloud.com
If you use K-Engine in your research, please cite:
@software{kengine2025,
author = {Jiang, Kun Jin},
title = {K-Engine: Karma Engine Implementation for HUGO369},
year = {2025},
url = {https://github.com/wenchyuan/k-engine}
}Contributions are welcome! Please ensure:
- All tests pass
- Code follows PEP 8 style guide
- New features include tests and documentation
- Commit messages are clear and descriptive
For issues, questions, or suggestions:
- GitHub Issues: https://github.com/wenchyuan/k-engine/issues
- Email: wenchyuan333@icloud.com
- GPU acceleration for large-scale simulations
- Real-time monitoring dashboard
- Integration with HUGO369 dashboard
- Advanced visualization tools
- Performance optimization suite
K-Engine is part of the HUGO369 Intent-Holographic Computer project, a novel computing paradigm that transcends traditional quantum computing limitations.
Version: 1.0.0
Last Updated: November 2025
Status: Production Ready ✅