Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
246 changes: 246 additions & 0 deletions webnn/clamp.https.any.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,246 @@
// META: title=test WebNN API clamp operation
// META: global=window,dedicatedworker
// META: script=./resources/utils.js
// META: timeout=long

'use strict';

// https://webmachinelearning.github.io/webnn/#api-mlgraphbuilder-clamp

const testClamp = async (operandType, syncFlag, inputValue, inputShape, expected, options) => {
const x = builder.input('x', {type: operandType, dimensions: inputShape});
const y = builder.clamp(x, options);
const TestTypedArray = TypedArrayDict[operandType];
const inputs = {'x': new TestTypedArray(inputValue)};
const outputs = {'y': new TestTypedArray(sizeOfShape(inputShape))};
let graph;

if (syncFlag) {
graph = builder.build({y});
context.compute(graph, inputs, outputs);
} else {
graph = await builder.buildAsync({y});
await context.computeAsync(graph, inputs, outputs);
}

assert_array_approx_equals_ulp(outputs.y, expected[operandType], PrecisionMetrics.ULP[operandType].clamp, operandType);
};

// Input data are random float64 numbers between [-10, 10) generated by invoking getRandomArbitrary(-10, 10)
// refering to https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random#getting_a_random_number_between_two_values
const inputData = [
-3.4356449350874696, -6.530945988411405, -8.175760663838268, 2.0879641317522726,
-4.480150236948526, -8.591504561715722, 5.071455429211573, -6.618697702258771,
4.224577823136105, 6.450272349350044, -8.799923845835664, -3.3445965406946643,
5.550524270215341, 1.2788677438688012, 9.333702625514768, 9.2261637863086,
-7.302720212371034, 1.7865902395032585, 5.564981581526375, 3.145101011211482,
-8.275078596251655, -1.3557080837143296, 7.348269585030259, -5.530012756488021,
];
// expected data by clamping input data with default options
const expectedDefault = {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could you please share how to get those expected data by running https://github.com/webmachinelearning/webnn-baseline against the inputData? And probably share the script that others can reproduce the expected results.

Copy link

@fdwr fdwr Oct 27, 2022

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It's also important (even more so) that the input be typed than the output. e.g.

const inputData = [
    float32: [
        -3.4356448650360107421875, -6.53094577789306640625,   -8.1757602691650390625,    2.08796405792236328125, 
        -4.4801502227783203125,    -8.59150409698486328125,    5.071455478668212890625, -6.618697643280029296875, 
         4.22457790374755859375,    6.45027256011962890625,   -8.79992389678955078125,  -3.3445966243743896484375, 
         5.550524234771728515625,   1.2788677215576171875,     9.33370304107666015625,   9.2261638641357421875, 
        -7.30272006988525390625,    1.78659021854400634765625, 5.5649814605712890625,    3.145101070404052734375, 
        -8.27507877349853515625,   -1.35570812225341796875,    7.34826946258544921875,  -5.530012607574462890625, 
    ]
    float64: [
        -3.4356449350874696, -6.530945988411405, -8.175760663838268,  2.0879641317522726,
        -4.480150236948526,  -8.591504561715722,  5.071455429211573, -6.618697702258771,
         4.224577823136105,   6.450272349350044, -8.799923845835664, -3.3445965406946643,
         5.550524270215341,   1.2788677438688012, 9.333702625514768,  9.2261637863086,
        -7.302720212371034,   1.7865902395032585, 5.564981581526375,  3.145101011211482,
        -8.275078596251655,  -1.3557080837143296, 7.348269585030259, -5.530012756488021,
    ]
];

That way both reference engine baseline and browser implementation start from the same value. It's totally fine for the reference engine to immediately upcast the float32 input to float64, then continue all computations in float64, but we just want to avoid any downcoast from float64 to float32 before providing input to the browser implementation.

float32: [
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could you please share how you convert the double precision results of webnn-baseline to float32?

-3.4356448650360107, -6.530945777893066, -8.175760269165039, 2.0879640579223633,
-4.48015022277832, -8.591504096984863, 5.071455478668213, -6.618697643280029,
4.224577903747559, 6.450272560119629, -8.79992389678955, -3.3445966243743896,
5.5505242347717285, 1.2788677215576172, 9.33370304107666, 9.226163864135742,
-7.302720069885254, 1.7865902185440063, 5.564981460571289, 3.1451010704040527,
-8.275078773498535, -1.355708122253418, 7.348269462585449, -5.530012607574463,
],
};
// expected data by clamping input data within [-5, 7]
const expectedMinMax = {
float32: [
-3.4356448650360107, -5, -5, 2.0879640579223633,
-4.48015022277832, -5, 5.071455478668213, -5,
4.224577903747559, 6.450272560119629, -5, -3.3445966243743896,
5.5505242347717285, 1.2788677215576172, 7, 7,
-5, 1.7865902185440063, 5.564981460571289, 3.1451010704040527,
-5, -1.355708122253418, 7, -5,
],
};
// expected data by clamping input data within [0, 6]
const expectedRelu6 = {
float32: [
0, 0, 0, 2.0879640579223633,
0, 0, 5.071455478668213, 0,
4.224577903747559, 6, 0, 0,
5.5505242347717285, 1.2788677215576172, 6, 6,
0, 1.7865902185440063, 5.564981460571289, 3.1451010704040527,
0, 0, 6, 0,
],
};
// expected data by clamping input data within [1, 8]
const expectedMinMaxBothPositive = {
float32: [
1, 1, 1, 2.0879640579223633,
1, 1, 5.071455478668213, 1,
4.224577903747559, 6.450272560119629, 1, 1,
5.5505242347717285, 1.2788677215576172, 8, 8,
1, 1.7865902185440063, 5.564981460571289, 3.1451010704040527,
1, 1, 7.348269462585449, 1,
],
};
// expected data by clamping input data within [-6, -1]
const expectedMinMaxBothNegative = {
float32: [
-3.4356448650360107, -6, -6, -1,
-4.48015022277832, -6, -1, -6,
-1, -1, -6, -3.3445966243743896,
-1, -1, -1, -1,
-6, -1, -1, -1,
-6, -1.355708122253418, -1, -5.530012607574463,
],
};

// expected data by clamping input data with specified minValue=-5
const expectedMin = {
float32: [
-3.4356448650360107, -5, -5, 2.0879640579223633,
-4.48015022277832, -5, 5.071455478668213, -5,
4.224577903747559, 6.450272560119629, -5, -3.3445966243743896,
5.5505242347717285, 1.2788677215576172, 9.33370304107666, 9.226163864135742,
-5, 1.7865902185440063, 5.564981460571289, 3.1451010704040527,
-5, -1.355708122253418, 7.348269462585449, -5,
],
};
// expected data by clamping input data with specified minValue=0
const expectedMinZero = {
float32: [
0, 0, 0, 2.0879640579223633,
0, 0, 5.071455478668213, 0,
4.224577903747559, 6.450272560119629, 0, 0,
5.5505242347717285, 1.2788677215576172, 9.33370304107666, 9.226163864135742,
0, 1.7865902185440063, 5.564981460571289, 3.1451010704040527,
0, 0, 7.348269462585449, 0,
],
};
// expected data by clamping input data with specified maxValue=7
const expectedMax = {
float32: [
-3.4356448650360107, -6.530945777893066, -8.175760269165039, 2.0879640579223633,
-4.48015022277832, -8.591504096984863, 5.071455478668213, -6.618697643280029,
4.224577903747559, 6.450272560119629, -8.79992389678955, -3.3445966243743896,
5.5505242347717285, 1.2788677215576172, 7, 7,
-7.302720069885254, 1.7865902185440063, 5.564981460571289, 3.1451010704040527,
-8.275078773498535, -1.355708122253418, 7, -5.530012607574463,
],
};
// expected data by clamping input data with specified maxValue=0
const expectedMaxZero = {
float32: [
-3.4356448650360107, -6.530945777893066, -8.175760269165039, 0,
-4.48015022277832, -8.591504096984863, 0, -6.618697643280029,
0, 0, -8.79992389678955, -3.3445966243743896,
0, 0, 0, 0,
-7.302720069885254, 0, 0, 0,
-8.275078773498535, -1.355708122253418, 0, -5.530012607574463,
],
};

// test = {
// purpose: [
// [inputShape, expectedData, options],
// ],
// };
const tests = {
'default options': [
// 1D
[[24], expectedDefault],
// 2D
[[4, 6], expectedDefault],
// 3D
[[2, 3, 4], expectedDefault],
// 4D
[[2, 3, 2, 2], expectedDefault],
// 5D
[[2, 3, 2, 1, 2], expectedDefault],
],
'only specified minValue option': [
// 1D
[[24], expectedMin, {minValue: -5}],
[[24], expectedMinZero, {minValue: 0}],
// 2D
[[4, 6], expectedMin, {minValue: -5}],
[[4, 6], expectedMinZero, {minValue: 0}],
// 3D
[[2, 3, 4], expectedMin, {minValue: -5}],
[[2, 3, 4], expectedMinZero, {minValue: 0}],
// 4D
[[2, 3, 2, 2], expectedMin, {minValue: -5}],
[[2, 3, 2, 2], expectedMinZero, {minValue: 0}],
// 5D
[[2, 3, 2, 1, 2], expectedMin, {minValue: -5}],
[[2, 3, 2, 1, 2], expectedMinZero, {minValue: 0}],
],
'only specified maxValue option': [
// 1D
[[24], expectedMax, {maxValue: 7}],
[[24], expectedMaxZero, {maxValue: 0}],
// 2D
[[4, 6], expectedMax, {maxValue: 7}],
[[4, 6], expectedMaxZero, {maxValue: 0}],
// 3D
[[2, 3, 4], expectedMax, {maxValue: 7}],
[[2, 3, 4], expectedMaxZero, {maxValue: 0}],
// 4D
[[2, 3, 2, 2], expectedMax, {maxValue: 7}],
[[2, 3, 2, 2], expectedMaxZero, {maxValue: 0}],
// 5D
[[2, 3, 2, 1, 2], expectedMax, {maxValue: 7}],
[[2, 3, 2, 1, 2], expectedMaxZero, {maxValue: 0}],
],
'both specified minValue and maxValue options': [
// 1D
[[24], expectedMinMax, {minValue: -5, maxValue: 7}],
[[24], expectedRelu6, {minValue: 0, maxValue: 6}],
[[24], expectedMinMaxBothPositive, {minValue: 1, maxValue: 8}],
[[24], expectedMinMaxBothNegative, {minValue: -6, maxValue: -1}],
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

(minor) I see for any expected value, the same options always correspond. e.g.

[[24], expectedMinMaxBothNegative, {minValue: -6, maxValue: -1}],
...
[[4, 6], expectedMinMaxBothNegative, {minValue: -6, maxValue: -1}],
...
[[2, 3, 4], expectedMinMaxBothNegative, {minValue: -6, maxValue: -1}],

How about putting the options adjacent to their corresponding expected output? e.g.

// expected data by clamping input data within [0, 6]
relu6options = {minValue: 0, maxValue: 6};
const expectedRelu6 = {
  float32: [
    0,                  0,                  0,                 2.0879640579223633,
    0,                  0,                  5.071455478668213, 0,
    4.224577903747559,  6,                  0,                 0,
    5.5505242347717285, 1.2788677215576172, 6,                 6,
    0,                  1.7865902185440063, 5.564981460571289, 3.1451010704040527,
    0,                  0,                  6,                 0,
  ],
};

...
[[24], expectedRelu6, relu6options],
...
[[4, 6], expectedMinMaxBothNegative, relu6options],
...
[[2, 3, 4], expectedMinMaxBothNegative, relu6options],

It would be a little easier to update tests then, because you just have to update one place instead of a search and replace. Also the comment becomes mostly moot then "expected data by clamping input data within [0, 6]", since the options are visibly near.

// 2D
[[4, 6], expectedMinMax, {minValue: -5, maxValue: 7}],
[[4, 6], expectedRelu6, {minValue: 0, maxValue: 6}],
[[4, 6], expectedMinMaxBothPositive, {minValue: 1, maxValue: 8}],
[[4, 6], expectedMinMaxBothNegative, {minValue: -6, maxValue: -1}],
// 3D
[[2, 3, 4], expectedMinMax, {minValue: -5, maxValue: 7}],
[[2, 3, 4], expectedRelu6, {minValue: 0, maxValue: 6}],
[[2, 3, 4], expectedMinMaxBothPositive, {minValue: 1, maxValue: 8}],
[[2, 3, 4], expectedMinMaxBothNegative, {minValue: -6, maxValue: -1}],
// 4D
[[2, 3, 2, 2], expectedMinMax, {minValue: -5, maxValue: 7}],
[[2, 3, 2, 2], expectedRelu6, {minValue: 0, maxValue: 6}],
[[2, 3, 2, 2], expectedMinMaxBothPositive, {minValue: 1, maxValue: 8}],
[[2, 3, 2, 2], expectedMinMaxBothNegative, {minValue: -6, maxValue: -1}],
// 5D
[[2, 3, 2, 1, 2], expectedMinMax, {minValue: -5, maxValue: 7}],
[[2, 3, 2, 1, 2], expectedRelu6, {minValue: 0, maxValue: 6}],
[[2, 3, 2, 1, 2], expectedMinMaxBothPositive, {minValue: 1, maxValue: 8}],
[[2, 3, 2, 1, 2], expectedMinMaxBothNegative, {minValue: -6, maxValue: -1}],
],
Copy link

@fdwr fdwr Oct 17, 2022

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should we have at least one case where minValue > 0 and one where maxValue < 0?

Copy link
Contributor Author

@BruceDai BruceDai Oct 18, 2022

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Do you mean adding exception tests? It's expected that an exception error should be threw for this minValue > 0 and maxValue < 0 case.

Copy link

@fdwr fdwr Oct 18, 2022

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

e.g.

[[2, 3, 2, 1, 2], expectedMinMaxBothPositive, {minValue: 5, maxValue: 10}],
[[2, 3, 2, 1, 2], expectedMinMaxBothNegative, {minValue: -10, maxValue: -5}],

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I updated clamp tests by adding such tests, please take a look again, thanks.

};
let context;
let builder;

ExecutionArray.forEach(executionType => {
const isSync = executionType === 'sync';
if (self.GLOBAL.isWindow() && isSync) {
return;
}

DeviceTypeArray.forEach(deviceType => {
promise_setup(async () => {
context = navigator.ml.createContext({deviceType});
builder = new MLGraphBuilder(context);
});

OperandTypeArray.forEach(operandType => {
for (let purpose in tests) {
promise_test(async () => {
const subTests = tests[purpose];
for (let i = 0; i < subTests.length; i++) {
await testClamp(operandType, isSync, inputData, subTests[i][0], subTests[i][1], subTests[i][2]);
}
}, `test clamp with ${purpose} / ${deviceType} / ${executionType} / ${operandType}`);
}
});
});
});
Loading