forked from ROCm/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[misc] CUDA Time Layerwise Profiler (vllm-project#8337)
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com> Co-authored-by: Michael Goin <michael@neuralmagic.com>
- Loading branch information
1 parent
390be74
commit 9d30a05
Showing
8 changed files
with
1,390 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,282 @@ | ||
import inspect | ||
import json | ||
import os | ||
import sys | ||
from argparse import RawTextHelpFormatter | ||
from dataclasses import asdict, dataclass | ||
from typing import Optional | ||
|
||
import torch | ||
|
||
from vllm import LLM, SamplingParams | ||
from vllm.engine.arg_utils import EngineArgs | ||
from vllm.profiler import layerwise_profile | ||
from vllm.utils import FlexibleArgumentParser | ||
|
||
BATCH_SIZE_DEFAULT = 1 | ||
PROMPT_LEN_DEFAULT = 256 | ||
OUTPUT_LEN_DEFAULT = 2 | ||
|
||
|
||
@dataclass | ||
class ProfileContext: | ||
engine_args: EngineArgs | ||
prompt_len: int | ||
output_len: int | ||
batch_size: int | ||
save_chrome_traces_folder: Optional[str] | ||
|
||
|
||
def get_dtype(dtype: str): | ||
if dtype == "torch.float": | ||
return torch.float | ||
else: | ||
return dtype | ||
|
||
|
||
def run_profile(context: ProfileContext, csv_output: Optional[str], | ||
json_output: Optional[str]): | ||
print("Run profile with:") | ||
for key, value in asdict(context).items(): | ||
print(f" {key} = {value}") | ||
|
||
# Create sampling params | ||
sampling_params = SamplingParams(temperature=0.8, | ||
top_p=0.95, | ||
max_tokens=args.output_len, | ||
ignore_eos=True) | ||
|
||
# Create LLM | ||
llm = LLM(**asdict(context.engine_args)) | ||
batch_size = context.batch_size | ||
prompt_len = context.prompt_len | ||
output_len = context.output_len | ||
|
||
scheduler_config = llm.llm_engine.scheduler_config | ||
max_model_len = llm.llm_engine.model_config.max_model_len | ||
max_num_batched_tokens = scheduler_config.max_num_batched_tokens | ||
max_num_seqs = scheduler_config.max_num_seqs | ||
|
||
if batch_size * prompt_len > max_num_batched_tokens: | ||
print(f"ERROR: chosen batch_size * prompt_len " | ||
f"({batch_size} * {prompt_len} = {batch_size * prompt_len}) is " | ||
f"larger than max_num_batched_tokens ({max_num_batched_tokens}) " | ||
f"and therefore cannot be run in a single profile step, please " | ||
f"choose a smaller batch size or prompt length, or increase " | ||
f"--max-num-batched-tokens") | ||
sys.exit(-1) | ||
if batch_size >= max_num_seqs: | ||
print( | ||
f"ERROR: chosen batch_size ({batch_size}) is larger than " | ||
f"max_num_seqs ({max_num_seqs}) and therefore cannot be run in a " | ||
f"single profile step, please choose a smaller batch size") | ||
sys.exit(-1) | ||
print("llm.llm_engine.model_config.max_model_len: ", | ||
llm.llm_engine.model_config.max_model_len) | ||
if prompt_len + output_len > llm.llm_engine.model_config.max_model_len: | ||
print( | ||
f"ERROR: chosen prompt_len + output_len ({prompt_len} + " | ||
f"{output_len} = {prompt_len + output_len}) is larger than the " | ||
f"model's max_model_len ({max_model_len}), please choose a smaller " | ||
f"prompt_len or output_len, or increase --max-model-len") | ||
sys.exit(-1) | ||
|
||
def add_requests(): | ||
for i in range(batch_size): | ||
prompt_token_ids = torch.randint( | ||
llm.llm_engine.model_config.get_vocab_size(), | ||
size=(prompt_len, )).tolist() | ||
|
||
llm.llm_engine.add_request( | ||
request_id=f"seq{i}", | ||
prompt={'prompt_token_ids': prompt_token_ids}, | ||
params=sampling_params) | ||
|
||
def abort_requests(): | ||
for i in range(batch_size): | ||
llm.llm_engine.abort_request(f"seq{i}") | ||
|
||
# Warm up run | ||
print("Warm up run ...") | ||
add_requests() | ||
llm.llm_engine.step() # Prefill | ||
llm.llm_engine.step() # Decode | ||
abort_requests() | ||
|
||
print("Profile run ...") | ||
add_requests() | ||
|
||
with layerwise_profile() as prefill_prof: | ||
llm.llm_engine.step() # First step is prefill | ||
|
||
decode_profs = [] | ||
for x in range(args.output_len - 1): | ||
with layerwise_profile() as decode_prof: | ||
llm.llm_engine.step() | ||
decode_profs.append(decode_prof) | ||
|
||
decode_results_list = [prof.results for prof in decode_profs] | ||
prefill_results = prefill_prof.results | ||
has_decode = len(decode_results_list) > 0 | ||
|
||
LINE_WIDTH = 80 | ||
print("=" * LINE_WIDTH) | ||
print(f"= Prefill Model Table " | ||
f"(prompt_len={prompt_len}, batch_size={batch_size})") | ||
print("=" * LINE_WIDTH) | ||
print() | ||
prefill_results.print_model_table() | ||
|
||
if has_decode: | ||
print() | ||
print("=" * LINE_WIDTH) | ||
print(f"= First Decode Step Model Table " | ||
f"(prompt_len={prompt_len}, batch_size={batch_size})") | ||
print("=" * LINE_WIDTH) | ||
print() | ||
decode_results_list[0].print_model_table() | ||
|
||
print() | ||
print("=" * LINE_WIDTH) | ||
print(f"= Prefill Summary Table " | ||
f"(prompt_len={prompt_len}, batch_size={batch_size})") | ||
print("=" * LINE_WIDTH) | ||
print() | ||
prefill_results.print_summary_table() | ||
|
||
if has_decode: | ||
print() | ||
print("=" * LINE_WIDTH) | ||
print(f"= First Decode Step Summary Table " | ||
f"(prompt_len={prompt_len}, batch_size={batch_size})") | ||
print("=" * LINE_WIDTH) | ||
print() | ||
decode_results_list[0].print_summary_table() | ||
|
||
if csv_output: | ||
csv_filename_base = csv_output.rstrip(".csv") | ||
prefill_results.export_model_stats_table_csv( | ||
csv_filename_base + "_prefill_model_table.csv") | ||
prefill_results.export_summary_stats_table_csv( | ||
csv_filename_base + "_prefill_summary_table.csv") | ||
|
||
if has_decode: | ||
decode_results_list[0].export_model_stats_table_csv(\ | ||
csv_filename_base + "_decode_model_table.csv") | ||
decode_results_list[0].export_summary_stats_table_csv( | ||
csv_filename_base + "_decode_summary_table.csv") | ||
|
||
if json_output: | ||
cuda_devices = [ | ||
torch.cuda.get_device_properties(dev_idx) | ||
for dev_idx in range(torch.cuda.device_count()) | ||
] | ||
|
||
json_dict = { | ||
"context": { | ||
"python_version": f"{sys.version}", | ||
"torch_version": f"{torch.__version__}", | ||
"torch_cuda_version": f"{torch.version.cuda}", | ||
"cuda_devices": f"{cuda_devices}", | ||
**asdict(context) | ||
}, | ||
"prefill": prefill_results.convert_stats_to_dict(), | ||
} | ||
|
||
if has_decode: | ||
for idx, dr in enumerate(decode_results_list): | ||
json_dict[f"decode_{idx + 1}"] = dr.convert_stats_to_dict() | ||
|
||
for idx, dr in enumerate(decode_results_list[1:]): | ||
json_dict[f"decode_{idx + 1}"] = dr.convert_stats_to_dict() | ||
|
||
with open(json_output.rstrip(".json") + ".json", "w+") as f: | ||
json.dump(json_dict, f, indent=2) | ||
pass | ||
|
||
if context.save_chrome_traces_folder is not None: | ||
os.makedirs(context.save_chrome_traces_folder, exist_ok=True) | ||
prefill_prof.profiler.export_chrome_trace( | ||
context.save_chrome_traces_folder + "/prefill.json") | ||
for idx, decode_prof in enumerate(decode_profs): | ||
decode_prof.profiler.export_chrome_trace( | ||
context.save_chrome_traces_folder + f"/decode_{idx + 1}.json") | ||
print("Traces saved as prefill.json and decode_1.json, etc." | ||
f" in folder {context.save_chrome_traces_folder}") | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = FlexibleArgumentParser(description=""" | ||
Profile a model | ||
example: | ||
``` | ||
python examples/offline_profile.py \\ | ||
--model neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8 --batch-size 4 \\ | ||
--prompt-len 512 --max-num-batched-tokens 8196 --json Llama31-8b-FP8 \\ | ||
--enforce-eager | ||
``` | ||
then you can use various tools to analyze the json output | ||
terminal ascii tables: | ||
``` | ||
python tools/profiler/print_layerwise_table.py \\ | ||
--json-trace Llama31-8b-FP8.json --phase prefill --table summary | ||
``` | ||
or create matplotlib stacked bar charts: | ||
``` | ||
python tools/profiler/visualize_layerwise_profile.py \\ | ||
--json-trace Llama31-8b-FP8.json \\ | ||
--output-directory profile_breakdown --plot-metric pct_cuda_time | ||
``` | ||
""", | ||
formatter_class=RawTextHelpFormatter) | ||
parser.add_argument( | ||
"--csv", | ||
type=str, | ||
default=None, | ||
help="Export the results as multiple csv file. This should be the root " | ||
"filename, will create <filename>_prefill_model_table.csv, " | ||
"<filename>_prefill_summary_table.csv, " | ||
"<filename>_decode_model_table.csv, and " | ||
"<filename>_decode_summary_table.csv") | ||
parser.add_argument( | ||
"--json", | ||
type=str, | ||
default=None, | ||
help="Export the results as a json file. This should be the filename") | ||
parser.add_argument("--save-chrome-traces-folder", | ||
type=str, | ||
help="Save chrome traces for the prefill and decode " | ||
"will save traces as prefill.json and decode_1.json, " | ||
"etc. inside this folder") | ||
parser.add_argument( | ||
"--prompt-len", | ||
type=int, | ||
default=PROMPT_LEN_DEFAULT, | ||
help=f"Length of the random prompt to use when profiling, all batched " | ||
f"requests use the same prompt_len, default={PROMPT_LEN_DEFAULT}") | ||
parser.add_argument("--batch-size", | ||
type=int, | ||
default=BATCH_SIZE_DEFAULT, | ||
help=f"Number of requests to run as a single batch, " | ||
f"default={BATCH_SIZE_DEFAULT}") | ||
parser.add_argument( | ||
"--output-len", | ||
type=int, | ||
default=OUTPUT_LEN_DEFAULT, | ||
help="Number of llm steps to run (includes prefill and decode) " | ||
"- default={OUTPUT_LEN_DEFAULT}") | ||
|
||
EngineArgs.add_cli_args(parser) | ||
|
||
args = parser.parse_args() | ||
|
||
context = ProfileContext( | ||
engine_args=EngineArgs.from_cli_args(args), | ||
**{ | ||
k: v | ||
for k, v in vars(args).items() | ||
if k in inspect.signature(ProfileContext).parameters | ||
}) | ||
run_profile(context, csv_output=args.csv, json_output=args.json) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
import argparse | ||
import json | ||
from typing import Dict | ||
|
||
from vllm.profiler.layerwise_profile import ModelStatsEntry, SummaryStatsEntry | ||
from vllm.profiler.utils import TablePrinter, indent_string | ||
|
||
|
||
def flatten_entries(entry_cls, profile_dict: Dict): | ||
entries_and_depth = [] | ||
|
||
def get_entries(node, curr_depth=0): | ||
entries_and_depth.append((entry_cls(**node["entry"]), curr_depth)) | ||
|
||
for child in node["children"]: | ||
get_entries( | ||
child, | ||
curr_depth=curr_depth + 1, | ||
) | ||
|
||
for root in profile_dict: | ||
get_entries(root) | ||
|
||
return entries_and_depth | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
|
||
parser.add_argument("--json-trace", | ||
type=str, | ||
required=True, | ||
help="json trace file output by " | ||
"examples/offline_profile.py") | ||
parser.add_argument("--phase", | ||
type=str, | ||
choices=["prefill", "decode_1"], | ||
required=True, | ||
help="The phase to print the table for.") | ||
parser.add_argument("--table", | ||
type=str, | ||
choices=["summary", "model"], | ||
default="summary", | ||
help="Which table to print, the summary table or the " | ||
"layerwise model table") | ||
|
||
args = parser.parse_args() | ||
|
||
with open(args.json_trace, "r") as f: | ||
profile_data = json.load(f) | ||
|
||
if args.table == "summary": | ||
entries_and_depths = flatten_entries( | ||
SummaryStatsEntry, profile_data[args.phase]["summary_stats"]) | ||
column_widths = dict(name=80, | ||
cuda_time_us=12, | ||
pct_cuda_time=12, | ||
invocations=15) | ||
elif args.table == "model": | ||
entries_and_depths = flatten_entries( | ||
ModelStatsEntry, profile_data[args.phase]["model_stats"]) | ||
column_widths = dict(name=60, | ||
cpu_time_us=12, | ||
cuda_time_us=12, | ||
pct_cuda_time=12, | ||
trace=60) | ||
|
||
# indent entry names based on the depth | ||
entries = [] | ||
for entry, depth in entries_and_depths: | ||
entry.name = indent_string( | ||
entry.name, | ||
indent=depth, | ||
indent_style=lambda indent: "|" + "-" * indent + " ") | ||
entries.append(entry) | ||
|
||
TablePrinter(type(entries[0]), column_widths).print_table(entries) |
Oops, something went wrong.