-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit f670238
Showing
15 changed files
with
639 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
*~ | ||
__pycache__ | ||
.DS_Store |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
import adlib as adlib |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from .svd import SVD | ||
from .eigh import EigenSolver | ||
from .qr import QR |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,40 @@ | ||
import numpy as np | ||
import torch | ||
|
||
class EigenSolver(torch.autograd.Function): | ||
@staticmethod | ||
def forward(self, A): | ||
w, v = torch.symeig(A, eigenvectors=True) | ||
|
||
self.save_for_backward(w, v) | ||
return w, v | ||
|
||
@staticmethod | ||
def backward(self, dw, dv): | ||
''' | ||
https://j-towns.github.io/papers/svd-derivative.pdf | ||
''' | ||
w, v = self.saved_tensors | ||
dtype, device = w.dtype, w.device | ||
N = v.shape[0] | ||
|
||
F = w - w[:,None] | ||
F.diagonal().fill_(np.inf); | ||
F = 1./F | ||
|
||
vt = v.t() | ||
vdv = vt@dv | ||
|
||
return v@(torch.diag(dw) + F*(vdv-vdv.t())/2) @vt | ||
|
||
def test_eigs(): | ||
M = 2 | ||
torch.manual_seed(42) | ||
A = torch.rand(M, M, dtype=torch.float64) | ||
A = torch.nn.Parameter(A+A.t()) | ||
assert(torch.autograd.gradcheck(DominantEigensolver.apply, A, eps=1e-6, atol=1e-4)) | ||
print("Test Pass!") | ||
|
||
if __name__=='__main__': | ||
test_eigs() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
import torch | ||
from torch.utils.checkpoint import detach_variable | ||
|
||
def step(A, x): | ||
y = A@x | ||
y = y[0].sign() * y | ||
return y/y.norm() | ||
|
||
class FixedPoint(torch.autograd.Function): | ||
@staticmethod | ||
def forward(ctx, A, x0, tol): | ||
x, x_prev = step(A, x0), x0 | ||
while torch.dist(x, x_prev) > tol: | ||
x, x_prev = step(A, x), x | ||
ctx.save_for_backward(A, x) | ||
ctx.tol = tol | ||
return x | ||
|
||
@staticmethod | ||
def backward(ctx, grad): | ||
A, x = detach_variable(ctx.saved_tensors) | ||
dA = grad | ||
while True: | ||
with torch.enable_grad(): | ||
grad = torch.autograd.grad(step(A, x), x, grad_outputs=grad)[0] | ||
if (torch.norm(grad) > ctx.tol): | ||
dA = dA + grad | ||
else: | ||
break | ||
with torch.enable_grad(): | ||
dA = torch.autograd.grad(step(A, x), A, grad_outputs=dA)[0] | ||
return dA, None, None | ||
|
||
def test_backward(): | ||
N = 4 | ||
torch.manual_seed(2) | ||
A = torch.rand(N, N, dtype=torch.float64, requires_grad=True) | ||
x0 = torch.rand(N, dtype=torch.float64) | ||
x0 = x0/x0.norm() | ||
tol = 1E-10 | ||
|
||
input = A, x0, tol | ||
assert(torch.autograd.gradcheck(FixedPoint.apply, input, eps=1E-6, atol=tol)) | ||
|
||
print("Backward Test Pass!") | ||
|
||
def test_forward(): | ||
torch.manual_seed(42) | ||
N = 100 | ||
tol = 1E-8 | ||
dtype = torch.float64 | ||
A = torch.randn(N, N, dtype=dtype) | ||
A = A+A.t() | ||
|
||
w, v = torch.symeig(A, eigenvectors=True) | ||
idx = torch.argmax(w.abs()) | ||
|
||
v_exact = v[:, idx] | ||
v_exact = v_exact[0].sign() * v_exact | ||
|
||
x0 = torch.rand(N, dtype=dtype) | ||
x0 = x0/x0.norm() | ||
x = FixedPoint.apply(A, x0, tol) | ||
|
||
assert(torch.allclose(v_exact, x, rtol=tol, atol=tol)) | ||
print("Forward Test Pass!") | ||
|
||
if __name__=='__main__': | ||
test_forward() | ||
test_backward() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
import torch | ||
|
||
class QR(torch.autograd.Function): | ||
@staticmethod | ||
def forward(self, A): | ||
Q, R = torch.qr(A) | ||
self.save_for_backward(A, Q, R) | ||
return Q, R | ||
|
||
@staticmethod | ||
def backward(self, dq, dr): | ||
A, q, r = self.saved_tensors | ||
if r.shape[0] == r.shape[1]: | ||
return _simple_qr_backward(q, r, dq ,dr) | ||
M, N = r.shape | ||
B = A[:,M:] | ||
dU = dr[:,:M] | ||
dD = dr[:,M:] | ||
U = r[:,:M] | ||
da = _simple_qr_backward(q, U, dq+B@dD.t(), dU) | ||
db = q@dD | ||
return torch.cat([da, db], 1) | ||
|
||
def _simple_qr_backward(q, r, dq, dr): | ||
if r.shape[-2] != r.shape[-1]: | ||
raise NotImplementedError("QrGrad not implemented when ncols > nrows " | ||
"or full_matrices is true and ncols != nrows.") | ||
|
||
qdq = q.t() @ dq | ||
qdq_ = qdq - qdq.t() | ||
rdr = r @ dr.t() | ||
rdr_ = rdr - rdr.t() | ||
tril = torch.tril(qdq_ + rdr_) | ||
|
||
def _TriangularSolve(x, r): | ||
"""Equiv to x @ torch.inverse(r).t() if r is upper-tri.""" | ||
res = torch.trtrs(x.t(), r, upper=True, transpose=False)[0].t() | ||
return res | ||
|
||
grad_a = q @ (dr + _TriangularSolve(tril, r)) | ||
grad_b = _TriangularSolve(dq - q @ qdq, r) | ||
return grad_a + grad_b | ||
|
||
def test_qr(): | ||
M, N = 4, 6 | ||
torch.manual_seed(2) | ||
A = torch.randn(M, N) | ||
A.requires_grad=True | ||
assert(torch.autograd.gradcheck(QR.apply, A, eps=1e-4, atol=1e-2)) | ||
print("Test Pass!") | ||
|
||
if __name__ == "__main__": | ||
test_qr() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
import numpy as np | ||
import scipy.linalg | ||
import torch, pdb | ||
|
||
def safe_inverse(x, epsilon=1E-12): | ||
return x/(x**2 + epsilon) | ||
|
||
class SVD(torch.autograd.Function): | ||
@staticmethod | ||
def forward(self, A): | ||
U, S, V = torch.svd(A) | ||
#numpy_input = A.detach().numpy() | ||
#U, S, Vt = scipy.linalg.svd(numpy_input, full_matrices=False, lapack_driver='gesvd') | ||
#U = torch.as_tensor(U, dtype=A.dtype, device=A.device) | ||
#S = torch.as_tensor(S, dtype=A.dtype, device=A.device) | ||
#V = torch.as_tensor(np.transpose(Vt), dtype=A.dtype, device=A.device) | ||
self.save_for_backward(U, S, V) | ||
return U, S, V | ||
|
||
@staticmethod | ||
def backward(self, dU, dS, dV): | ||
U, S, V = self.saved_tensors | ||
Vt = V.t() | ||
Ut = U.t() | ||
M = U.size(0) | ||
N = V.size(0) | ||
NS = len(S) | ||
|
||
F = (S - S[:, None]) | ||
F = safe_inverse(F) | ||
F.diagonal().fill_(0) | ||
|
||
G = (S + S[:, None]) | ||
G.diagonal().fill_(np.inf) | ||
G = 1/G | ||
|
||
UdU = Ut @ dU | ||
VdV = Vt @ dV | ||
|
||
Su = (F+G)*(UdU-UdU.t())/2 | ||
Sv = (F-G)*(VdV-VdV.t())/2 | ||
|
||
dA = U @ (Su + Sv + torch.diag(dS)) @ Vt | ||
if (M>NS): | ||
dA = dA + (torch.eye(M, dtype=dU.dtype, device=dU.device) - U@Ut) @ (dU/S) @ Vt | ||
if (N>NS): | ||
dA = dA + (U/S) @ dV.t() @ (torch.eye(N, dtype=dU.dtype, device=dU.device) - V@Vt) | ||
#print (dU.norm().item(), dS.norm().item(), dV.norm().item()) | ||
#print (Su.norm().item(), Sv.norm().item(), dS.norm().item()) | ||
#print (dA1.norm().item(), dA2.norm().item(), dA3.norm().item()) | ||
return dA | ||
|
||
def test_svd(): | ||
M, N = 50, 40 | ||
torch.manual_seed(2) | ||
input = torch.rand(M, N, dtype=torch.float64, requires_grad=True) | ||
assert(torch.autograd.gradcheck(SVD.apply, input, eps=1e-6, atol=1e-4)) | ||
print("Test Pass!") | ||
|
||
if __name__=='__main__': | ||
test_svd() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
import argparse | ||
|
||
parser = argparse.ArgumentParser(description='') | ||
parser.add_argument("-folder", default='../data/',help="where to store results") | ||
parser.add_argument("-d", type=int, default=2, help="d") | ||
parser.add_argument("-D", type=int, default=2, help="D") | ||
parser.add_argument("-chi", type=int, default=20, help="chi") | ||
parser.add_argument("-Nepochs", type=int, default=50, help="Nepochs") | ||
parser.add_argument("-Maxiter", type=int, default=50, help="Maxiter") | ||
parser.add_argument("-Jz", type=float, default=1.0, help="Jz") | ||
parser.add_argument("-Jxy", type=float, default=1.0, help="Jxy") | ||
parser.add_argument("-hx", type=float, default=1.0, help="hx") | ||
parser.add_argument("-model", default='Heisenberg', choices=['TFIM', 'Heisenberg'], help="model name") | ||
parser.add_argument("-load", default=None, help="load") | ||
parser.add_argument("-save_period", type=int, default=1, help="") | ||
parser.add_argument("-float32", action='store_true', help="use float32") | ||
parser.add_argument("-use_checkpoint", action='store_true', help="use checkpoint") | ||
parser.add_argument("-cuda", type=int, default=-1, help="use GPU") | ||
|
||
args = parser.parse_args() | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,51 @@ | ||
import torch | ||
from renormalize import renormalize | ||
from torch.utils import checkpoint | ||
|
||
def ctmrg(T, chi, max_iter, use_checkpoint=False): | ||
|
||
threshold = 1E-12 if T.dtype is torch.float64 else 1E-6 # ctmrg convergence threshold | ||
|
||
C = T.sum((0,1)) | ||
E = T.sum(1) | ||
|
||
truncation_error = 0.0 | ||
diff = 1E10 | ||
sold = torch.zeros(chi, dtype=T.dtype, device=T.device) | ||
for n in range(max_iter): | ||
tensors = T, C, E | ||
if use_checkpoint: # use checkpoint to save memory | ||
C, E, s, error = checkpoint(*tensors) | ||
else: | ||
C, E, s, error = renormalize(*tensors) | ||
|
||
truncation_error = max(truncation_error, error.item()) | ||
if (s.numel() == sold.numel()): | ||
diff = (s-sold).norm().item() | ||
#print( 'n: %d, error: %e, diff: %e' % (n, error.item(), diff) ) | ||
|
||
if (diff < threshold): | ||
break | ||
sold = s | ||
print ('ctmrg iterations, diff, error', n, diff, truncation_error/n) | ||
|
||
return C, E | ||
|
||
if __name__=='__main__': | ||
import time | ||
D = 64 | ||
chi = 150 | ||
device = 'cuda:0' | ||
T = torch.randn(D, D, D, D, dtype=torch.float64, device=device, requires_grad=True) | ||
T = (T + T.permute(3, 1, 2, 0))/2. | ||
T = (T + T.permute(0, 2, 1, 3))/2. | ||
T = (T + T.permute(2, 3, 0, 1))/2. | ||
T = (T + T.permute(1, 0, 3, 2))/2. | ||
T = T/T.norm() | ||
|
||
C = torch.randn(chi, chi, dtype=torch.float64, device=device, requires_grad=True) | ||
C = (C+C.t())/2. | ||
E = torch.randn(chi, D, chi, dtype=torch.float64, device=device, requires_grad=True) | ||
E = (E + E.permute(2, 1, 0))/2. | ||
args = C, E, T, torch.tensor(chi) | ||
checkpoint(renormalize, *args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
import torch | ||
from ctmrg import ctmrg | ||
from measure import get_obs | ||
from utils import symmetrize | ||
from args import args | ||
|
||
class iPEPS(torch.nn.Module): | ||
def __init__(self, args, dtype=torch.float64, device='cpu', use_checkpoint=False): | ||
super(iPEPS, self).__init__() | ||
|
||
B = torch.rand(args.d, args.D, args.D, args.D, args.D, dtype=dtype, device=device) | ||
B = B/B.norm() | ||
self.A = torch.nn.Parameter(B) | ||
|
||
def forward(self, H, Mpx, Mpy, Mpz): | ||
|
||
Asymm = symmetrize(self.A) | ||
|
||
d, D = Asymm.shape[0], Asymm.shape[1] | ||
T = (Asymm.view(d, -1).t()@Asymm.view(d, -1)).view(D, D, D, D, D, D, D, D).permute(0,4, 1,5, 2,6, 3,7).contiguous().view(D**2, D**2, D**2, D**2) | ||
T = T/T.norm() | ||
|
||
C, E = ctmrg(T, args.chi, args.Maxiter, args.use_checkpoint) | ||
loss, Mx, My, Mz = get_obs(Asymm, H, Mpx, Mpy, Mpz, C, E) | ||
|
||
return loss, Mx, My, Mz |
Oops, something went wrong.