forked from PaddlePaddle/PaddleYOLO
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add IoU-loss for yolov3 (PaddlePaddle#192)
* add iou loss to yolov3 * modify the comment and delete redundant yml file * fix the low speed bug in dropblock module
- Loading branch information
1 parent
97088fe
commit 4b05371
Showing
5 changed files
with
271 additions
and
10 deletions.
There are no files selected for viewing
75 changes: 75 additions & 0 deletions
75
configs/dcn/yolov3_r50vd_dcn_iouloss_obj365_pretrained_coco.yml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
architecture: YOLOv3 | ||
use_gpu: true | ||
max_iters: 55000 | ||
log_smooth_window: 20 | ||
save_dir: output | ||
snapshot_iter: 10000 | ||
metric: COCO | ||
pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_obj365_pretrained.tar | ||
weights: output/yolov3_r50vd_dcn_iouloss_obj365_pretrained_coco/model_final | ||
num_classes: 80 | ||
use_fine_grained_loss: true | ||
|
||
YOLOv3: | ||
backbone: ResNet | ||
yolo_head: YOLOv3Head | ||
use_fine_grained_loss: true | ||
|
||
ResNet: | ||
norm_type: sync_bn | ||
freeze_at: 0 | ||
freeze_norm: false | ||
norm_decay: 0. | ||
depth: 50 | ||
feature_maps: [3, 4, 5] | ||
variant: d | ||
dcn_v2_stages: [5] | ||
|
||
YOLOv3Head: | ||
anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]] | ||
anchors: [[10, 13], [16, 30], [33, 23], | ||
[30, 61], [62, 45], [59, 119], | ||
[116, 90], [156, 198], [373, 326]] | ||
norm_decay: 0. | ||
yolo_loss: YOLOv3Loss | ||
nms: | ||
background_label: -1 | ||
keep_top_k: 100 | ||
nms_threshold: 0.45 | ||
nms_top_k: 1000 | ||
normalized: false | ||
score_threshold: 0.01 | ||
|
||
YOLOv3Loss: | ||
batch_size: 8 | ||
ignore_thresh: 0.7 | ||
label_smooth: false | ||
use_fine_grained_loss: true | ||
iou_loss: IouLoss | ||
|
||
IouLoss: | ||
loss_weight: 2.5 | ||
max_height: 608 | ||
max_width: 608 | ||
|
||
LearningRate: | ||
base_lr: 0.001 | ||
schedulers: | ||
- !PiecewiseDecay | ||
gamma: 0.1 | ||
milestones: | ||
- 40000 | ||
- 50000 | ||
- !LinearWarmup | ||
start_factor: 0. | ||
steps: 4000 | ||
|
||
OptimizerBuilder: | ||
optimizer: | ||
momentum: 0.9 | ||
type: Momentum | ||
regularizer: | ||
factor: 0.0005 | ||
type: L2 | ||
|
||
_READER_: '../yolov3_reader.yml' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
import numpy as np | ||
from paddle.fluid.param_attr import ParamAttr | ||
from paddle.fluid.initializer import NumpyArrayInitializer | ||
|
||
from paddle import fluid | ||
from ppdet.core.workspace import register, serializable | ||
|
||
__all__ = ['IouLoss'] | ||
|
||
|
||
@register | ||
@serializable | ||
class IouLoss(object): | ||
""" | ||
iou loss, see https://arxiv.org/abs/1908.03851 | ||
loss = 1.0 - iou * iou | ||
Args: | ||
loss_weight (float): iou loss weight, default is 2.5 | ||
max_height (int): max height of input to support random shape input | ||
max_width (int): max width of input to support random shape input | ||
""" | ||
def __init__(self, | ||
loss_weight=2.5, | ||
max_height=608, | ||
max_width=608): | ||
self._loss_weight = loss_weight | ||
self._MAX_HI = max_height | ||
self._MAX_WI = max_width | ||
|
||
def __call__(self, x, y, w, h, tx, ty, tw, th, | ||
anchors, downsample_ratio, batch_size, eps=1.e-10): | ||
''' | ||
Args: | ||
x | y | w | h ([Variables]): the output of yolov3 for encoded x|y|w|h | ||
tx |ty |tw |th ([Variables]): the target of yolov3 for encoded x|y|w|h | ||
anchors ([float]): list of anchors for current output layer | ||
downsample_ratio (float): the downsample ratio for current output layer | ||
batch_size (int): training batch size | ||
eps (float): the decimal to prevent the denominator eqaul zero | ||
''' | ||
x1, y1, x2, y2 = self._bbox_transform(x, y, w, h, anchors, | ||
downsample_ratio, batch_size, False) | ||
x1g, y1g, x2g, y2g = self._bbox_transform(tx, ty, tw, th, | ||
anchors, downsample_ratio, batch_size, True) | ||
|
||
x2 = fluid.layers.elementwise_max(x1, x2) | ||
y2 = fluid.layers.elementwise_max(y1, y2) | ||
|
||
xkis1 = fluid.layers.elementwise_max(x1, x1g) | ||
ykis1 = fluid.layers.elementwise_max(y1, y1g) | ||
xkis2 = fluid.layers.elementwise_min(x2, x2g) | ||
ykis2 = fluid.layers.elementwise_min(y2, y2g) | ||
|
||
xc1 = fluid.layers.elementwise_min(x1, x1g) | ||
yc1 = fluid.layers.elementwise_min(y1, y1g) | ||
xc2 = fluid.layers.elementwise_max(x2, x2g) | ||
yc2 = fluid.layers.elementwise_max(y2, y2g) | ||
|
||
intsctk = (xkis2 - xkis1) * (ykis2 - ykis1) | ||
intsctk = intsctk * fluid.layers.greater_than( | ||
xkis2, xkis1) * fluid.layers.greater_than(ykis2, ykis1) | ||
unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsctk + eps | ||
iouk = intsctk / unionk | ||
loss_iou = 1. - iouk * iouk | ||
loss_iou = loss_iou * self._loss_weight | ||
|
||
return loss_iou | ||
|
||
def _bbox_transform(self, dcx, dcy, dw, dh, anchors, downsample_ratio, batch_size, is_gt): | ||
grid_x = int(self._MAX_WI / downsample_ratio) | ||
grid_y = int(self._MAX_HI / downsample_ratio) | ||
an_num = len(anchors) // 2 | ||
|
||
shape_fmp = fluid.layers.shape(dcx) | ||
shape_fmp.stop_gradient = True | ||
# generate the grid_w x grid_h center of feature map | ||
idx_i = np.array([[i for i in range(grid_x)]]) | ||
idx_j = np.array([[j for j in range(grid_y)]]).transpose() | ||
gi_np = np.repeat(idx_i, grid_y, axis=0) | ||
gi_np = np.reshape(gi_np, newshape=[1, 1, grid_y, grid_x]) | ||
gi_np = np.tile(gi_np, reps=[batch_size, an_num, 1, 1]) | ||
gj_np = np.repeat(idx_j, grid_x, axis=1) | ||
gj_np = np.reshape(gj_np, newshape=[1, 1, grid_y, grid_x]) | ||
gj_np = np.tile(gj_np, reps=[batch_size, an_num, 1, 1]) | ||
gi_max = self._create_tensor_from_numpy(gi_np.astype(np.float32)) | ||
gi = fluid.layers.crop(x=gi_max, shape=dcx) | ||
gi.stop_gradient = True | ||
gj_max = self._create_tensor_from_numpy(gj_np.astype(np.float32)) | ||
gj = fluid.layers.crop(x=gj_max, shape=dcx) | ||
gj.stop_gradient = True | ||
|
||
grid_x_act = fluid.layers.cast(shape_fmp[3], dtype="float32") | ||
grid_x_act.stop_gradient = True | ||
grid_y_act = fluid.layers.cast(shape_fmp[2], dtype="float32") | ||
grid_y_act.stop_gradient = True | ||
if is_gt: | ||
cx = fluid.layers.elementwise_add(dcx, gi) / grid_x_act | ||
cx.gradient = True | ||
cy = fluid.layers.elementwise_add(dcy, gj) / grid_y_act | ||
cy.gradient = True | ||
else: | ||
dcx_sig = fluid.layers.sigmoid(dcx) | ||
cx = fluid.layers.elementwise_add(dcx_sig, gi) / grid_x_act | ||
dcy_sig = fluid.layers.sigmoid(dcy) | ||
cy = fluid.layers.elementwise_add(dcy_sig, gj) / grid_y_act | ||
|
||
anchor_w_ = [anchors[i] for i in range(0, len(anchors)) if i % 2 == 0] | ||
anchor_w_np = np.array(anchor_w_) | ||
anchor_w_np = np.reshape(anchor_w_np, newshape=[1, an_num, 1, 1]) | ||
anchor_w_np = np.tile(anchor_w_np, reps=[batch_size, 1, grid_y, grid_x]) | ||
anchor_w_max = self._create_tensor_from_numpy(anchor_w_np.astype(np.float32)) | ||
anchor_w = fluid.layers.crop(x=anchor_w_max, shape=dcx) | ||
anchor_w.stop_gradient = True | ||
anchor_h_ = [anchors[i] for i in range(0, len(anchors)) if i % 2 == 1] | ||
anchor_h_np = np.array(anchor_h_) | ||
anchor_h_np = np.reshape(anchor_h_np, newshape=[1, an_num, 1, 1]) | ||
anchor_h_np = np.tile(anchor_h_np, reps=[batch_size, 1, grid_y, grid_x]) | ||
anchor_h_max = self._create_tensor_from_numpy(anchor_h_np.astype(np.float32)) | ||
anchor_h = fluid.layers.crop(x=anchor_h_max, shape=dcx) | ||
anchor_h.stop_gradient = True | ||
# e^tw e^th | ||
exp_dw = fluid.layers.exp(dw) | ||
exp_dh = fluid.layers.exp(dh) | ||
pw = fluid.layers.elementwise_mul(exp_dw, anchor_w) / \ | ||
(grid_x_act * downsample_ratio) | ||
ph = fluid.layers.elementwise_mul(exp_dh, anchor_h) / \ | ||
(grid_y_act * downsample_ratio) | ||
if is_gt: | ||
exp_dw.stop_gradient = True | ||
exp_dh.stop_gradient = True | ||
pw.stop_gradient = True | ||
ph.stop_gradient = True | ||
|
||
|
||
x1 = cx - 0.5 * pw | ||
y1 = cy - 0.5 * ph | ||
x2 = cx + 0.5 * pw | ||
y2 = cy + 0.5 * ph | ||
if is_gt: | ||
x1.stop_gradient = True | ||
y1.stop_gradient = True | ||
x2.stop_gradient = True | ||
y2.stop_gradient = True | ||
|
||
return x1, y1, x2, y2 | ||
|
||
def _create_tensor_from_numpy(self, numpy_array): | ||
paddle_array = fluid.layers.create_parameter( | ||
attr=ParamAttr(), | ||
shape=numpy_array.shape, | ||
dtype=numpy_array.dtype, | ||
default_initializer=NumpyArrayInitializer(numpy_array)) | ||
paddle_array.stop_gradient = True | ||
return paddle_array | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters