This repository contains the implementation of the hybrid intelligence framework proposed in our paper "Multi-Scale Physical Constraints and Data Synergy Hybrid Intelligence Framework: A New Paradigm for Scientific Prediction of Multi-Component Systems Under Small-Sample Conditions".
The framework integrates multi-scale physical constraints with data-driven approaches to address challenges in small-sample scientific prediction:
- T-KMeans-LOF: Temperature clustering-guided local outlier detection
- IADAF: Integrated Adaptive Data Augmentation Framework using WGAN-GP
- LDPC: Low-Dimensional Physical Constraints
numpy==1.21.0
pandas==1.3.0
torch==1.9.0
scikit-learn==1.0.1
scipy==1.7.0
xgboost==1.5.0
joblib==1.1.0
bayes-opt==1.2.0
statsmodels==0.12.0
git clone https://github.com/[username]/hybrid-intelligence-framework.git
cd hybrid-intelligence-framework
pip install -r requirements.txt
from src.preprocessing import TKMeansLOF
# Initialize the outlier detector
detector = TKMeansLOF(n_clusters='auto', contamination=0.20)
# Fit and transform data
cleaned_data = detector.fit_transform(raw_data)
from src.augmentation import IADAF
# Initialize the augmentation framework
augmentor = IADAF(
latent_dim_range=(10, 256),
hidden_dim_range=(10, 512),
n_samples=1500
)
# Generate synthetic data
augmented_data = augmentor.fit_generate(cleaned_data)
from src.constraints import LDPCConstraints
# Initialize constraints with binary system data
constraints = LDPCConstraints(
binary_data_path='data/binary_systems/'
)
# Apply constraints to predictions
constrained_predictions = constraints.apply(predictions, temperature)
data/
├── raw/ # Original experimental data
├── processed/ # Cleaned data after T-KMeans-LOF
├── augmented/ # Data after IADAF augmentation
└── binary_systems/ # Binary system solubility data for constraints
If you use this code in your research, please cite:
This project is licensed under the MIT License - see the LICENSE file for details.
For questions and feedback, please contact: [3152303762@qq.com]