Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions Cargo.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

4 changes: 4 additions & 0 deletions codecov.yml
Original file line number Diff line number Diff line change
Expand Up @@ -18,3 +18,7 @@ comment:
require_head: true
hide_project_coverage: false
after_n_builds: 3

# ignore example binaries
ignore:
- "**/examples/*.rs"
3 changes: 3 additions & 0 deletions vortex/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,10 @@ itertools = { workspace = true }
mimalloc = { workspace = true }
parquet = { workspace = true }
rand = { workspace = true }
serde_json = { workspace = true }
tokio = { workspace = true, features = ["full"] }
tracing = { workspace = true }
tracing-subscriber = { workspace = true }
vortex = { path = ".", features = ["tokio"] }

[features]
Expand Down
238 changes: 238 additions & 0 deletions vortex/examples/compression_showcase.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,238 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright the Vortex contributors

//! Compression Strategies Showcase
//!
//! This example demonstrates Vortex's powerful compression capabilities,
//! comparing different encoding strategies for various data patterns.
//!
//! Run with: cargo run --example compression_showcase

use vortex::arrays::{PrimitiveArray, StructArray, VarBinArray};
use vortex::compressor::BtrBlocksCompressor;
use vortex::dtype::{DType, Nullability};
use vortex::validity::Validity;
use vortex::{Array, IntoArray};
use vortex_buffer::Buffer;

fn main() -> Result<(), Box<dyn std::error::Error>> {
println!("=== Vortex Compression Showcase ===\n");

println!("This example demonstrates how Vortex automatically selects");
println!("optimal compression strategies for different data patterns.\n");

// 1. Compress sequential/monotonic data
println!("1. Sequential Data Compression:");
compress_sequential_data()?;

// 2. Compress repetitive data
println!("\n2. Repetitive Data Compression:");
compress_repetitive_data()?;

// 3. Compress string data
println!("\n3. String Data Compression:");
compress_string_data()?;

// 4. Compress floating-point data
println!("\n4. Floating-Point Data Compression:");
compress_float_data()?;

// 5. Compress sparse data
println!("\n5. Sparse Data Compression:");
compress_sparse_data()?;

// 6. Compress structured data
println!("\n6. Structured Data Compression:");
compress_structured_data()?;

println!("\n=== Compression showcase completed! ===");
Ok(())
}

fn compress_sequential_data() -> Result<(), Box<dyn std::error::Error>> {
// Create sequential data (e.g., timestamps, IDs)
let sequential: PrimitiveArray = (1000..11000).map(|i| i as u64).collect();

let uncompressed_size = estimate_size(sequential.as_ref());
println!(" Original sequential data (10,000 values):");
println!(" Uncompressed size: ~{} bytes", uncompressed_size);

// Compress using default strategy
let compressor = BtrBlocksCompressor::default();
let compressed = compressor.compress(sequential.as_ref())?;

let compressed_size = compressed.nbytes();
let ratio = uncompressed_size as f64 / compressed_size as f64;

println!(" Compressed size: ~{} bytes", compressed_size);
println!(" Compression ratio: {:.2}x", ratio);
println!(" Encoding: {}", compressed.encoding().id());
println!(" Note: Sequential data often compresses well with Delta or FoR encoding");

Ok(())
}

fn compress_repetitive_data() -> Result<(), Box<dyn std::error::Error>> {
// Create highly repetitive data (run-length encoding opportunity)
let mut repetitive = Vec::new();
for i in 0..100 {
for _ in 0..100 {
repetitive.push(i as u32);
}
}
let array: PrimitiveArray = repetitive.into_iter().collect();

let uncompressed_size = estimate_size(array.as_ref());
println!(" Repetitive data (100 values, each repeated 100 times):");
println!(" Uncompressed size: ~{} bytes", uncompressed_size);

let compressor = BtrBlocksCompressor::default();
let compressed = compressor.compress(array.as_ref())?;

let compressed_size = compressed.nbytes();
let ratio = uncompressed_size as f64 / compressed_size as f64;

println!(" Compressed size: ~{} bytes", compressed_size);
println!(" Compression ratio: {:.2}x", ratio);
println!(" Encoding: {}", compressed.encoding().id());
println!(" Note: RLE (Run-Length Encoding) is ideal for repetitive data");

Ok(())
}

fn compress_string_data() -> Result<(), Box<dyn std::error::Error>> {
// Create string data with patterns
let categories = vec!["Electronics", "Clothing", "Food", "Books"];
let mut strings = Vec::new();

// Repeat categories multiple times (good for dictionary encoding)
for _ in 0..2500 {
for category in &categories {
strings.push(Some(*category));
}
}

let array = VarBinArray::from_iter(strings, DType::Utf8(Nullability::NonNullable));

let uncompressed_size = estimate_size(array.as_ref());
println!(" Categorical string data (10,000 strings, 4 categories):");
println!(" Uncompressed size: ~{} bytes", uncompressed_size);

let compressor = BtrBlocksCompressor::default();
let compressed = compressor.compress(array.as_ref())?;

let compressed_size = compressed.nbytes();
let ratio = uncompressed_size as f64 / compressed_size as f64;

println!(" Compressed size: ~{} bytes", compressed_size);
println!(" Compression ratio: {:.2}x", ratio);
println!(" Encoding: {}", compressed.encoding().id());
println!(" Note: Dictionary encoding is excellent for categorical/repetitive strings");

Ok(())
}

fn compress_float_data() -> Result<(), Box<dyn std::error::Error>> {
// Create floating-point data with patterns
let floats: Buffer<f64> = (0..10000).map(|i| (i as f64) * 0.1 + 100.0).collect();
let array = floats.into_array();

let uncompressed_size = estimate_size(&array);
println!(" Floating-point data (10,000 values):");
println!(" Uncompressed size: ~{} bytes", uncompressed_size);

let compressor = BtrBlocksCompressor::default();
let compressed = compressor.compress(array.as_ref())?;

let compressed_size = compressed.nbytes();
let ratio = uncompressed_size as f64 / compressed_size as f64;

println!(" Compressed size: ~{} bytes", compressed_size);
println!(" Compression ratio: {:.2}x", ratio);
println!(" Encoding: {}", compressed.encoding().id());
println!(" Note: ALP or PCO encodings are optimized for floating-point data");

Ok(())
}

fn compress_sparse_data() -> Result<(), Box<dyn std::error::Error>> {
// Create sparse data (mostly zeros with few non-zero values)
let mut sparse = vec![0i64; 10000];
for i in (0..10000).step_by(100) {
sparse[i] = (i * 42) as i64;
}
let array: PrimitiveArray = sparse.into_iter().collect();

let uncompressed_size = estimate_size(array.as_ref());
println!(" Sparse data (10,000 values, 99% zeros):");
println!(" Uncompressed size: ~{} bytes", uncompressed_size);

let compressor = BtrBlocksCompressor::default();
let compressed = compressor.compress(array.as_ref())?;

let compressed_size = compressed.nbytes();
let ratio = uncompressed_size as f64 / compressed_size as f64;

println!(" Compressed size: ~{} bytes", compressed_size);
println!(" Compression ratio: {:.2}x", ratio);
println!(" Encoding: {}", compressed.encoding().id());
println!(" Note: Sparse encoding stores only non-zero indices and values");

Ok(())
}

fn compress_structured_data() -> Result<(), Box<dyn std::error::Error>> {
// Create a struct array with multiple columns
let size = 5000;

// ID column (sequential)
let ids: PrimitiveArray = (1..=size).map(|i| i as u64).collect();

// Status column (categorical)
let statuses: Vec<Option<&str>> = (0..size)
.map(|i| match i % 3 {
0 => "active",
1 => "pending",
_ => "completed",
})
.map(Some)
.collect();
let status_array = VarBinArray::from_iter(statuses, DType::Utf8(Nullability::NonNullable));

// Value column (floats)
let values: PrimitiveArray = (0..size).map(|i| (i as f64) * 1.5).collect();

let struct_array = StructArray::try_new(
["id", "status", "value"].into(),
vec![
ids.into_array(),
status_array.into_array(),
values.into_array(),
],
size,
Validity::NonNullable,
)?;

let uncompressed_size = estimate_size(struct_array.as_ref());
println!(" Structured data (5,000 records, 3 columns):");
println!(" Uncompressed size: ~{} bytes", uncompressed_size);

let compressor = BtrBlocksCompressor::default();
let compressed = compressor.compress(struct_array.as_ref())?;

let compressed_size = compressed.nbytes();
let ratio = uncompressed_size as f64 / compressed_size as f64;

println!(" Compressed size: ~{} bytes", compressed_size);
println!(" Compression ratio: {:.2}x", ratio);
println!(" Encoding: {}", compressed.encoding().id());
println!(" Note: Each column can be compressed with its optimal strategy");

Ok(())
}

/// Estimate the size of an array in bytes (approximation)
#[allow(clippy::cast_possible_truncation)]
fn estimate_size(array: &dyn Array) -> usize {
array.nbytes() as usize
}
Loading
Loading