Closed
Description
I found that as the training progressed, the System Memory Utilization (%) skyrocketed, and after a fixed point ray would report an out of memory error that would crash the training process.
- Error
- System Memory Utilization (%)
- Script
set -x
MODEL_PATH=<local_path>
export VLLM_ATTENTION_BACKEND=XFORMERS
python3 -m verl.trainer.main_ppo \
algorithm.adv_estimator=grpo \
data.train_files=<local_path> \
data.val_files=<local_path> \
data.train_batch_size=64 \
data.val_batch_size=64 \
data.max_prompt_length=768 \
data.max_response_length=3328 \
actor_rollout_ref.model.path=$MODEL_PATH \
actor_rollout_ref.actor.optim.lr=1e-6 \
actor_rollout_ref.actor.ppo_mini_batch_size=64 \
actor_rollout_ref.actor.ppo_max_token_len_per_gpu=12288 \
actor_rollout_ref.actor.use_kl_loss=False \
actor_rollout_ref.actor.kl_loss_coef=0. \
actor_rollout_ref.actor.kl_loss_type=low_var_kl \
actor_rollout_ref.actor.use_dynamic_bsz=True \
actor_rollout_ref.actor.ulysses_sequence_parallel_size=1 \
actor_rollout_ref.model.use_remove_padding=True \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
actor_rollout_ref.actor.fsdp_config.param_offload=False \
actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \
actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
actor_rollout_ref.rollout.name=vllm \
actor_rollout_ref.rollout.temperature=1.0 \
actor_rollout_ref.rollout.gpu_memory_utilization=0.72 \
actor_rollout_ref.rollout.n=32 \
actor_rollout_ref.rollout.log_prob_max_token_len_per_gpu=12288 \
actor_rollout_ref.rollout.enforce_eager=False \
actor_rollout_ref.rollout.free_cache_engine=False \
actor_rollout_ref.ref.log_prob_max_token_len_per_gpu=12288 \
actor_rollout_ref.ref.fsdp_config.param_offload=True \
algorithm.kl_ctrl.kl_coef=0. \
trainer.critic_warmup=0 \
trainer.logger=['wandb'] \
trainer.project_name=<wandb> \
trainer.experiment_name=<wandb> \
trainer.n_gpus_per_node=8 \
trainer.nnodes=1 \
trainer.default_local_dir=<local_path> \
trainer.default_hdfs_dir=null \
+trainer.val_before_train=False \
trainer.save_freq=200 \
trainer.test_freq=200 \
trainer.total_epochs=3
Or is there some parameter I haven't configured correctly that is causing the memory usage to keep increasing?