Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[core] cudagraph output with tensor weak reference #9724

Merged
merged 4 commits into from
Oct 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 24 additions & 0 deletions csrc/ops.h
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,30 @@

#include "core/scalar_type.hpp"

#include <vector>

torch::Tensor weak_ref_tensor(torch::Tensor& tensor) {
// Ensure tensor is on CUDA
if (!tensor.is_cuda()) {
throw std::runtime_error("Tensor must be on CUDA device");
}

// Get the raw data pointer
void* data_ptr = tensor.data_ptr();

// Get tensor sizes and strides
std::vector<int64_t> sizes = tensor.sizes().vec();
std::vector<int64_t> strides = tensor.strides().vec();

// Get tensor options (dtype, device)
auto options = tensor.options();

// Create a new tensor from the raw data pointer
auto new_tensor = torch::from_blob(data_ptr, sizes, strides, options);

return new_tensor;
}

void paged_attention_v1(
torch::Tensor& out, torch::Tensor& query, torch::Tensor& key_cache,
torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
Expand Down
3 changes: 3 additions & 0 deletions csrc/torch_bindings.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,9 @@
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// vLLM custom ops

ops.def("weak_ref_tensor(Tensor input) -> Tensor");
ops.impl("weak_ref_tensor", torch::kCUDA, &weak_ref_tensor);

// Attention ops
// Compute the attention between an input query and the cached
// keys/values using PagedAttention.
Expand Down
9 changes: 9 additions & 0 deletions vllm/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -1488,3 +1488,12 @@ def __iter__(self):

def __len__(self):
return len(self._factory)


def weak_ref_tensor(tensor: torch.Tensor) -> torch.Tensor:
"""
Create a weak reference to a tensor.
The new tensor will share the same data as the original tensor,
but will not keep the original tensor alive.
"""
return torch.ops._C.weak_ref_tensor(tensor)
42 changes: 14 additions & 28 deletions vllm/worker/model_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@
from vllm.transformers_utils.config import uses_mrope
from vllm.utils import (DeviceMemoryProfiler, PyObjectCache, async_tensor_h2d,
flatten_2d_lists, is_hip, is_pin_memory_available,
supports_dynamo)
supports_dynamo, weak_ref_tensor)
from vllm.worker.model_runner_base import (
ModelRunnerBase, ModelRunnerInputBase, ModelRunnerInputBuilderBase,
_add_attn_metadata_broadcastable_dict,
Expand Down Expand Up @@ -1426,12 +1426,6 @@ def capture_model(self, kv_caches: List[List[torch.Tensor]]) -> None:
dtype=self.model_config.dtype,
device=self.device)

# Prepare buffer for outputs. These will be reused for all batch sizes.
# It will be filled after the first graph capture.
hidden_or_intermediate_states: List[Optional[torch.Tensor]] = [
None
youkaichao marked this conversation as resolved.
Show resolved Hide resolved
] * self.parallel_config.pipeline_parallel_size

graph_batch_size = self.max_batchsize_to_capture
batch_size_capture_list = [
bs for bs in _BATCH_SIZES_TO_CAPTURE if bs <= graph_batch_size
Expand Down Expand Up @@ -1474,12 +1468,6 @@ def capture_model(self, kv_caches: List[List[torch.Tensor]]) -> None:
input_tokens[:batch_size],
"positions":
input_positions[..., :batch_size],
"hidden_or_intermediate_states":
hidden_or_intermediate_states[
virtual_engine] # type: ignore
[:batch_size]
if hidden_or_intermediate_states[virtual_engine]
is not None else None,
"intermediate_inputs":
intermediate_inputs[:batch_size]
if intermediate_inputs is not None else None,
Expand Down Expand Up @@ -1762,15 +1750,13 @@ def capture(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
hidden_or_intermediate_states: Optional[Union[IntermediateTensors,
torch.Tensor]],
intermediate_inputs: Optional[IntermediateTensors],
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
memory_pool: Optional[Tuple[int, int]],
stream: torch.cuda.Stream,
**kwargs,
) -> Union[torch.Tensor, IntermediateTensors]:
):
assert self._graph is None
# Run the model a few times without capturing the graph.
# This is to make sure that the captured graph does not include the
Expand Down Expand Up @@ -1799,20 +1785,21 @@ def capture(
intermediate_tensors=intermediate_inputs,
**kwargs,
)
if hidden_or_intermediate_states is not None:
if get_pp_group().is_last_rank:
hidden_or_intermediate_states.copy_(
output_hidden_or_intermediate_states)
else:
for key in hidden_or_intermediate_states.tensors:
hidden_or_intermediate_states[key].copy_(
output_hidden_or_intermediate_states[key])
else:
hidden_or_intermediate_states = (

if isinstance(output_hidden_or_intermediate_states, torch.Tensor):
hidden_or_intermediate_states = weak_ref_tensor(
output_hidden_or_intermediate_states)
elif isinstance(output_hidden_or_intermediate_states,
IntermediateTensors):
hidden_or_intermediate_states = IntermediateTensors(
tensors={
key: weak_ref_tensor(value)
for key, value in
output_hidden_or_intermediate_states.tensors.items()
})

del output_hidden_or_intermediate_states
# make sure `output_hidden_states` is deleted
# make sure `output_hidden_or_intermediate_states` is deleted
# in the graph's memory pool
gc.collect()
torch.cuda.synchronize()
Expand All @@ -1837,7 +1824,6 @@ def capture(
}
else:
self.output_buffers = hidden_or_intermediate_states
return hidden_or_intermediate_states

def forward(
self,
Expand Down