Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Misc] Support quantization of MllamaForCausalLM #8822

Merged
merged 1 commit into from
Sep 25, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Support quantization of MllamaForCausalLM
  • Loading branch information
mgoin committed Sep 25, 2024
commit ea907206ad82a082edb1997b8de02afa8b965eb9
11 changes: 9 additions & 2 deletions vllm/model_executor/models/mllama.py
Original file line number Diff line number Diff line change
Expand Up @@ -624,6 +624,7 @@ def __init__(
self,
config: Optional[config_mllama.MllamaTextConfig] = None,
layer_idx: Optional[int] = None,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.config = config
Expand All @@ -648,12 +649,14 @@ def __init__(
self.num_heads,
self.num_key_value_heads,
bias=False,
quant_config=quant_config,
)
self.o_proj = RowParallelLinear(
self.num_heads * self.head_dim,
self.hidden_size,
bias=False,
input_is_parallel=True,
quant_config=quant_config,
)
# vllm.model_executor.layers.layernorm.RMSNorm has precision issue,
# use huggingface's instead
Expand Down Expand Up @@ -708,13 +711,15 @@ class MllamaCrossAttentionDecoderLayer(torch.nn.Module):
"""Cross-attention transformer block with tanh-gated attention
and feedforward."""

def __init__(self, config: config_mllama.MllamaTextConfig, layer_idx: int) \
def __init__(self, config: config_mllama.MllamaTextConfig, layer_idx: int,
quant_config: Optional[QuantizationConfig]) \
-> None:
super().__init__()
self.layer_idx = layer_idx
self.cross_attn = MllamaTextCrossAttention(
config=config,
layer_idx=layer_idx,
quant_config=quant_config,
)

self.input_layernorm = RMSNorm(config.hidden_size,
Expand All @@ -725,6 +730,7 @@ def __init__(self, config: config_mllama.MllamaTextConfig, layer_idx: int) \
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
Expand Down Expand Up @@ -780,7 +786,8 @@ def __init__(self, config: config_mllama.MllamaTextConfig,
for layer_idx in range(config.num_hidden_layers):
if layer_idx in self.cross_attention_layers:
layers.append(
MllamaCrossAttentionDecoderLayer(config, layer_idx))
MllamaCrossAttentionDecoderLayer(
config, layer_idx, quant_config=quant_config))
else:
# TODO: force LlamaDecoderLayer to config.attention_bias=False
layers.append(
Expand Down
Loading