Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

re-implement beam search on top of vllm core #8726

Merged
merged 26 commits into from
Sep 24, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
Show all changes
26 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
update return types
  • Loading branch information
LunrEclipse committed Sep 21, 2024
commit a0d8aaeed7a8516609179c1d989a86ad519ea887
22 changes: 3 additions & 19 deletions tests/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -787,27 +787,11 @@ def generate_encoder_decoder_greedy_logprobs(

def generate_beam_search(
self,
prompts: List[str], # or a List of List[int]
prompts: Union[List[str], List[List[int]]],
beam_width: int,
max_tokens: int,
) -> List[Tuple[List[List[int]], List[str]]]:
outputs = []
for prompt in prompts:
outputs.append(self.model.beam_search(prompt, beam_width, max_tokens))
return outputs

def generate_beam_search_old(
self,
prompts: List[str],
beam_width: int,
max_tokens: int,
) -> List[Tuple[List[List[int]], List[str]]]:
beam_search_params = SamplingParams(n=beam_width,
use_beam_search=True,
temperature=0.0,
max_tokens=max_tokens)
outputs = self.generate(prompts, beam_search_params)
return outputs
) -> List[Tuple[List[int], str]]:
return self.model.beam_search(prompt, beam_width, max_tokens)

def encode(self, prompts: List[str]) -> List[List[float]]:
req_outputs = self.model.encode(prompts)
Expand Down
62 changes: 38 additions & 24 deletions vllm/entrypoints/llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -349,39 +349,48 @@ def generate(
outputs = self._run_engine(use_tqdm=use_tqdm)
return LLMEngine.validate_outputs(outputs, RequestOutput)

# take either a str or List[int]
def beam_search(
self,
prompt: str,
prompts: Union[List[str], List[List[int]]],
beam_width: int,
max_tokens: int,
) -> RequestOutput:
) -> List[Tuple[List[List[int]], List[str]]]:
outputs = []
for prompt in prompts:
outputs.append(self._run_beam_search(prompt, beam_width, max_tokens))
return outputs

def _run_beam_search(
self,
prompt: Union[List[int], str],
beam_width: int,
max_tokens: int,
) -> Tuple[List[List[int]], List[str]]:

class BeamSearchSequence:
def __init__(self, sequence: str, tokens: List[int], logprob: float):
self.sequence = sequence
def __init__(self, tokens: List[int], logprob: float):
self.tokens = tokens
self.logprob = logprob

beams: List[BeamSearchSequence] = []
completed: List[BeamSearchSequence] = []

tokenizer = self.get_tokenizer()
tokens = prompt

if isinstance(prompt, str):
tokens = tokenizer.encode(prompt)

beams.append(BeamSearchSequence(tokens=tokens, logprob=0))
beam_search_params = SamplingParams(
logprobs=beam_width,
max_tokens=1,
temperature=0.0)
output = self.generate(prompt, beam_search_params)
tokens = output[0].prompt_token_ids

logprobs = output[0].outputs[0].logprobs[0]
for token_id, logprob_obj in logprobs.items():
beam_sequence = prompt + logprob_obj.decoded_token
beam_tokens = tokens + [token_id]
beam_logprob = logprob_obj.logprob
new_beam = BeamSearchSequence(sequence=beam_sequence, tokens=beam_tokens, logprob=beam_logprob)
beams.append(new_beam)

for _ in range(1, max_tokens-1):

for _ in range(max_tokens):
if len(beams) == 0:
break

prompts = [TokensPrompt(prompt_token_ids=s.tokens) for s in beams]
output = self.generate(prompts, sampling_params=beam_search_params)

Expand All @@ -391,22 +400,27 @@ def __init__(self, sequence: str, tokens: List[int], logprob: float):

logprobs = output[j].outputs[0].logprobs[0]
for token_id, logprob_obj in logprobs.items():
beam_sequence = current_beam.sequence + logprob_obj.decoded_token
beam_tokens = current_beam.tokens + [token_id]
beam_logprob = current_beam.logprob + logprob_obj.logprob
new_beam = BeamSearchSequence(sequence=beam_sequence, tokens=beam_tokens, logprob=beam_logprob)
new_beams.append(new_beam)
new_beam = BeamSearchSequence(tokens=beam_tokens, logprob=beam_logprob)
if token_id == tokenizer.eos_token_id:
completed.append(new_beam)
else:
new_beams.append(new_beam)

sorted_beams = sorted(new_beams, key=lambda x: x.logprob, reverse=True)
beams = sorted_beams[:beam_width]

completed.extend(beams)
completed = sorted(completed, key=lambda x: x.logprob, reverse=True)
completed = completed[:beam_width]

beam_search_params = SamplingParams(
max_tokens=1,
temperature=0.0)
return self.generate(completed[0].sequence, beam_search_params)
for final_beams in completed:

final_tokens = completed[0].tokens
final_sequence = tokenizer.decode(final_tokens)

return (final_tokens, final_sequence)

def chat(
self,
Expand Down