Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Hardware][Intel CPU] Adding intel openmp tunings in Docker file #6008

Merged
merged 4 commits into from
Jul 4, 2024

Conversation

zhouyuan
Copy link
Contributor

@zhouyuan zhouyuan commented Jul 1, 2024

This patch adds more tunings for CPU backend on intel openmp.
These tunings improves CPU backend performance greatly, especially on throughput related tests.
This patch also updates the CPU docker file to run the serving endpoint as entry point by default

FIX #xxxx (link existing issues this PR will resolve)

BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE


PR Checklist (Click to Expand)

Thank you for your contribution to vLLM! Before submitting the pull request, please ensure the PR meets the following criteria. This helps vLLM maintain the code quality and improve the efficiency of the review process.

PR Title and Classification

Only specific types of PRs will be reviewed. The PR title is prefixed appropriately to indicate the type of change. Please use one of the following:

  • [Bugfix] for bug fixes.
  • [CI/Build] for build or continuous integration improvements.
  • [Doc] for documentation fixes and improvements.
  • [Model] for adding a new model or improving an existing model. Model name should appear in the title.
  • [Frontend] For changes on the vLLM frontend (e.g., OpenAI API server, LLM class, etc.)
  • [Kernel] for changes affecting CUDA kernels or other compute kernels.
  • [Core] for changes in the core vLLM logic (e.g., LLMEngine, AsyncLLMEngine, Scheduler, etc.)
  • [Hardware][Vendor] for hardware-specific changes. Vendor name should appear in the prefix (e.g., [Hardware][AMD]).
  • [Misc] for PRs that do not fit the above categories. Please use this sparingly.

Note: If the PR spans more than one category, please include all relevant prefixes.

Code Quality

The PR need to meet the following code quality standards:

  • We adhere to Google Python style guide and Google C++ style guide.
  • Pass all linter checks. Please use format.sh to format your code.
  • The code need to be well-documented to ensure future contributors can easily understand the code.
  • Include sufficient tests to ensure the project to stay correct and robust. This includes both unit tests and integration tests.
  • Please add documentation to docs/source/ if the PR modifies the user-facing behaviors of vLLM. It helps vLLM user understand and utilize the new features or changes.

Notes for Large Changes

Please keep the changes as concise as possible. For major architectural changes (>500 LOC excluding kernel/data/config/test), we would expect a GitHub issue (RFC) discussing the technical design and justification. Otherwise, we will tag it with rfc-required and might not go through the PR.

What to Expect for the Reviews

The goal of the vLLM team is to be a transparent reviewing machine. We would like to make the review process transparent and efficient and make sure no contributor feel confused or frustrated. However, the vLLM team is small, so we need to prioritize some PRs over others. Here is what you can expect from the review process:

  • After the PR is submitted, the PR will be assigned to a reviewer. Every reviewer will pick up the PRs based on their expertise and availability.
  • After the PR is assigned, the reviewer will provide status update every 2-3 days. If the PR is not reviewed within 7 days, please feel free to ping the reviewer or the vLLM team.
  • After the review, the reviewer will put an action-required label on the PR if there are changes required. The contributor should address the comments and ping the reviewer to re-review the PR.
  • Please respond to all comments within a reasonable time frame. If a comment isn't clear or you disagree with a suggestion, feel free to ask for clarification or discuss the suggestion.

Thank You

Finally, thank you for taking the time to read these guidelines and for your interest in contributing to vLLM. Your contributions make vLLM a great tool for everyone!

@zhouyuan zhouyuan changed the title [Hardware][Intel CPU] Adding intel openmp tunings do Docker file [Hardware][Intel CPU] Adding intel openmp tunings in Docker file Jul 1, 2024
This patch adds more tunins for CPU backend on intel openmp.
These tunings improves CPU backend performance greatly, especially on throughput related tests.

Signed-off-by: Yuan Zhou <yuan.zhou@intel.com>
Signed-off-by: Yuan Zhou <yuan.zhou@intel.com>
Dockerfile.cpu Outdated Show resolved Hide resolved
Dockerfile.cpu Outdated Show resolved Hide resolved
Signed-off-by: Yuan Zhou <yuan.zhou@intel.com>
Copy link
Collaborator

@WoosukKwon WoosukKwon left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM! Thanks for the PR!

Dockerfile.cpu Show resolved Hide resolved
Dockerfile.cpu Outdated Show resolved Hide resolved
@zhouyuan zhouyuan force-pushed the wip_cpu_perf_tuning branch 4 times, most recently from b955cbf to 90a1be3 Compare July 4, 2024 09:29
Signed-off-by: Yuan Zhou <yuan.zhou@intel.com>
@@ -150,6 +150,9 @@ def __init__(
if self.is_driver_worker:
assert self.rank == 0, "The driver worker must have rank 0."

# try to initialize intel openmp optimized tunings
init_kmp_env()
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please double-check whether the env variables are correctly used by the libraries. In my personal experience, some env variables have to be set before the libraries are loaded.

@WoosukKwon WoosukKwon merged commit 81d7a50 into vllm-project:main Jul 4, 2024
67 of 69 checks passed
@bigPYJ1151 bigPYJ1151 mentioned this pull request Jul 5, 2024
4 tasks
robertgshaw2-neuralmagic pushed a commit to neuralmagic/nm-vllm that referenced this pull request Jul 7, 2024
xjpang pushed a commit to xjpang/vllm that referenced this pull request Jul 8, 2024
xjpang pushed a commit to xjpang/vllm that referenced this pull request Jul 24, 2024
Alvant pushed a commit to compressa-ai/vllm that referenced this pull request Oct 26, 2024
…m-project#6008)

Signed-off-by: Yuan Zhou <yuan.zhou@intel.com>
Signed-off-by: Alvant <alvasian@yandex.ru>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants