Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Hardware][TPU] Optimize KV cache swapping #5878

Merged
merged 4 commits into from
Jun 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 4 additions & 12 deletions vllm/attention/backends/pallas.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,21 +28,13 @@ def get_kv_cache_shape(
) -> Tuple[int, ...]:
return (num_kv_heads, num_blocks, block_size, head_size)

@torch.compile(backend="openxla")
@staticmethod
def swap_blocks(
src_kv_cache: Tuple[torch.Tensor, torch.Tensor],
dst_kv_cache: Tuple[torch.Tensor, torch.Tensor],
src_to_dst: Tuple[torch.Tensor, torch.Tensor],
src_kv_cache: torch.Tensor,
dst_kv_cache: torch.Tensor,
src_to_dst: torch.Tensor,
) -> None:
src_k_cache, src_v_cache = src_kv_cache
dst_k_cache, dst_v_cache = dst_kv_cache
src_indices, dst_indices = src_to_dst
device = dst_k_cache.device
torch.ops.xla.dynamo_set_buffer_donor_(dst_k_cache, True)
torch.ops.xla.dynamo_set_buffer_donor_(dst_v_cache, True)
dst_k_cache[:, dst_indices] = src_k_cache[:, src_indices].to(device)
dst_v_cache[:, dst_indices] = src_v_cache[:, src_indices].to(device)
raise RuntimeError("swap_blocks is not used for the TPU backend.")

@torch.compile(backend="openxla")
@staticmethod
Expand Down
42 changes: 32 additions & 10 deletions vllm/worker/tpu_worker.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@

import torch
import torch_xla.core.xla_model as xm
import torch_xla.experimental.dynamo_set_buffer_donor # noqa: F401
import torch_xla.runtime as xr

import vllm.envs as envs
Expand Down Expand Up @@ -152,8 +153,8 @@ def initialize_cache(
num_kv_heads = self.model_config.get_num_kv_heads(self.parallel_config)
head_size = self.model_config.get_head_size()

self.cpu_cache = []
self.tpu_cache = []
self.cpu_cache: List[Tuple[torch.Tensor, torch.Tensor]] = []
self.tpu_cache: List[Tuple[torch.Tensor, torch.Tensor]] = []
tpu_cache_shape = self.model_runner.attn_backend.get_kv_cache_shape(
num_gpu_blocks, self.block_size, num_kv_heads, head_size)
cpu_cache_shape = self.model_runner.attn_backend.get_kv_cache_shape(
Expand Down Expand Up @@ -227,18 +228,25 @@ def cache_swap(

if blocks_to_swap_in:
# Swap from CPU to TPU.
src_to_dst = _make_src_to_dst(blocks_to_swap_in, "cpu",
self.device)
src_indices, dst_indices = _make_src_to_dst(
blocks_to_swap_in, "cpu", self.device)
for i in range(num_layers):
attn_backend.swap_blocks(self.cpu_cache[i], self.tpu_cache[i],
src_to_dst)
tpu_k_cache, tpu_v_cache = self.tpu_cache[i]
cpu_k_cache, cpu_v_cache = self.cpu_cache[i]
k = cpu_k_cache[:, src_indices].to(self.device)
v = cpu_v_cache[:, src_indices].to(self.device)
_insert_kv(k, v, dst_indices, tpu_k_cache, tpu_v_cache)

if blocks_to_swap_out:
# Swap from TPU to CPU.
src_to_dst = _make_src_to_dst(blocks_to_swap_out, self.device,
"cpu")
src_indices, dst_indices = _make_src_to_dst(
blocks_to_swap_out, self.device, "cpu")
for i in range(num_layers):
attn_backend.swap_blocks(self.tpu_cache[i], self.cpu_cache[i],
src_to_dst)
tpu_k_cache, tpu_v_cache = self.tpu_cache[i]
cpu_k_cache, cpu_v_cache = self.cpu_cache[i]
cpu_k_cache[:, dst_indices] = tpu_k_cache[:, src_indices].cpu()
cpu_v_cache[:, dst_indices] = tpu_v_cache[:, src_indices].cpu()

if blocks_to_copy:
src_to_dst = _make_src_to_dst(blocks_to_copy, self.device,
self.device)
Expand Down Expand Up @@ -267,3 +275,17 @@ def _make_src_to_dst(
device=dst_device,
dtype=torch.int64)
return src_indices, dst_indices


@torch.compile(backend="openxla")
def _insert_kv(
k: torch.Tensor,
v: torch.Tensor,
indices: torch.Tensor,
tpu_k_cache: torch.Tensor,
tpu_v_cache: torch.Tensor,
) -> None:
torch.ops.xla.dynamo_set_buffer_donor_(tpu_k_cache, True)
torch.ops.xla.dynamo_set_buffer_donor_(tpu_v_cache, True)
tpu_k_cache[:, indices] = k
tpu_v_cache[:, indices] = v
Loading