Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Hardware][Intel] Isolate CPUModelRunner and ModelRunner for better maintenance #3824

Merged
merged 2 commits into from
Apr 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 24 additions & 48 deletions vllm/attention/backends/torch_sdpa.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,20 +50,15 @@ def copy_blocks(


@dataclass
class TorchSDPAMetadata(AttentionMetadataPerStage, PagedAttentionMetadata):
class TorchSDPAMetadata(AttentionMetadata, PagedAttentionMetadata,
AttentionMetadataPerStage):
"""Metadata for TorchSDPABackend.
"""
# Currently, input sequences can only contain all prompts
# or all decoding. True if all sequences are prompts.
is_prompt: bool
slot_mapping: torch.Tensor
prompt_lens: Optional[List[int]]
prompt_lens_tensor: Optional[torch.Tensor]

max_subquery_len: Optional[int] = None
max_prompt_len: Optional[int] = None
subquery_start_loc: Optional[torch.Tensor] = None
seq_start_loc: Optional[torch.Tensor] = None
use_cuda_graph: bool = False

def __post_init__(self):
# Set during the execution of the first attention op.
Expand Down Expand Up @@ -111,7 +106,7 @@ def forward(
key: torch.Tensor,
value: torch.Tensor,
kv_cache: Optional[torch.Tensor],
attn_metadata: AttentionMetadata[TorchSDPAMetadata],
attn_metadata: TorchSDPAMetadata,
kv_scale: float,
) -> torch.Tensor:
"""Forward pass with torch SDPA and PagedAttention.
Expand Down Expand Up @@ -140,51 +135,36 @@ def forward(
attn_metadata.kv_cache_dtype,
kv_scale)

num_prefill_tokens = attn_metadata.num_prefill_tokens
num_decode_tokens = attn_metadata.num_decode_tokens
assert key.shape[0] == num_prefill_tokens + num_decode_tokens
assert value.shape[0] == num_prefill_tokens + num_decode_tokens

output = torch.empty_like(query)
# Query for decode. KV is not needed because it is already cached.
decode_query = query[num_prefill_tokens:]
# QKV for prefill.
query = query[:num_prefill_tokens]
key = key[:num_prefill_tokens]
value = value[:num_prefill_tokens]

assert query.shape[0] == num_prefill_tokens
assert decode_query.shape[0] == num_decode_tokens

if prefill_meta := attn_metadata.prefill_metadata:
if (kv_cache is None or prefill_meta.block_tables.numel() == 0):
if attn_metadata.is_prompt:
if (kv_cache is None or attn_metadata.block_tables.numel() == 0):
if self.num_kv_heads != self.num_heads:
key = key.repeat_interleave(self.num_queries_per_kv, dim=1)
value = value.repeat_interleave(self.num_queries_per_kv,
dim=1)

if prefill_meta.attn_bias is None:
if attn_metadata.attn_bias is None:
if self.alibi_slopes is not None:
att_masks = _make_alibi_bias(
self.alibi_slopes, query.dtype,
prefill_meta.prompt_lens) # type: ignore
attn_metadata.prompt_lens) # type: ignore
elif self.sliding_window is not None:
att_masks = _make_sliding_window_bias(
prefill_meta.prompt_lens, self.sliding_window,
attn_metadata.prompt_lens, self.sliding_window,
query.dtype) # type: ignore
else:
att_masks = [None] * len(prefill_meta.prompt_lens)
prefill_meta.attn_bias = att_masks
att_masks = [None] * len(attn_metadata.prompt_lens)
attn_metadata.attn_bias = att_masks

query = query.movedim(0, query.dim() - 2)
key = key.movedim(0, key.dim() - 2)
value = value.movedim(0, value.dim() - 2)

start = 0
out = torch.empty((num_tokens, self.num_heads, self.head_size),
dtype=query.dtype)
for prompt_len, mask in zip(prefill_meta.prompt_lens,
prefill_meta.attn_bias):
output = torch.empty(
(num_tokens, self.num_heads, self.head_size),
dtype=query.dtype)
for prompt_len, mask in zip(attn_metadata.prompt_lens,
attn_metadata.attn_bias):
end = start + prompt_len
sub_out = scaled_dot_product_attention(
query[:, start:end, :],
Expand All @@ -194,32 +174,28 @@ def forward(
dropout_p=0.0,
is_causal=not self.need_mask,
scale=self.scale).movedim(query.dim() - 2, 0)
out[start:end, :, :] = sub_out
output[start:end, :, :] = sub_out
start = end
assert out.shape == output[:num_prefill_tokens].shape
output[:num_prefill_tokens] = out
else:
# prefix-enabled attention
raise RuntimeError(
"Torch SDPA backend doesn't support prefix decoding.")

if decode_meta := attn_metadata.decode_metadata:
else:
# Decoding run.
out = PagedAttention.forward_decode(
decode_query,
output = PagedAttention.forward_decode(
query,
key_cache,
value_cache,
decode_meta.block_tables,
decode_meta.context_lens,
decode_meta.max_context_len,
attn_metadata.block_tables,
attn_metadata.context_lens,
attn_metadata.max_context_len,
attn_metadata.kv_cache_dtype,
self.num_kv_heads,
self.scale,
self.alibi_slopes,
kv_scale,
)
assert out.shape == output[num_prefill_tokens:].shape
output[num_prefill_tokens:]

# Reshape the output tensor.
return output.view(-1, self.num_heads * self.head_size)
Expand All @@ -241,7 +217,7 @@ def _make_alibi_bias(
bias = bias[None, :] - bias[:, None]

num_heads = alibi_slopes.shape[0]
bias = bias[None, :].expand(num_heads, prompt_len, prompt_len)
bias = bias[None, :].repeat((num_heads, 1, 1))
bias.mul_(alibi_slopes[:, None, None])
inf_mask = torch.empty(
(1, prompt_len, prompt_len),
Expand Down
10 changes: 10 additions & 0 deletions vllm/executor/cpu_executor.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ def __init__(self, model_config: ModelConfig, cache_config: CacheConfig,
assert lora_config is None, "cpu backend doesn't support LoRA"
model_config = _verify_and_get_model_config(model_config)
cache_config = _verify_and_get_cache_config(cache_config)
scheduler_config = _verify_and_get_scheduler_config(scheduler_config)

self.model_config = model_config
self.cache_config = cache_config
Expand Down Expand Up @@ -116,6 +117,15 @@ def _verify_and_get_model_config(config: ModelConfig) -> ModelConfig:
return config


def _verify_and_get_scheduler_config(
config: SchedulerConfig) -> SchedulerConfig:
if config.chunked_prefill_enabled:
logger.warning("Chunked prefill is not supported on CPU, disable it.")
config.chunked_prefill_enabled = False

return config


def _verify_and_get_cache_config(config: CacheConfig) -> CacheConfig:
_GB = 1 << 30
if config.enable_prefix_caching:
Expand Down
1 change: 0 additions & 1 deletion vllm/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -372,7 +372,6 @@ def is_pin_memory_available() -> bool:
print_warning_once("Pin memory is not supported on Neuron.")
return False
elif is_cpu():
print_warning_once("Pin memory is not supported on CPU.")
return False
return True

Expand Down
Loading
Loading