Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Possible fix for conflict between Automated Prefix Caching (#2762) and multi-LoRA support (#1804) #3263

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 31 additions & 15 deletions tests/test_cache_block_hashing.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,11 @@

Run `pytest tests/test_cache_block_hashing.py`.
"""
from typing import List, Optional

import pytest

from vllm.lora.request import LoRARequest
from vllm.transformers_utils.tokenizer import TokenizerGroup
from vllm.sequence import Sequence

Expand Down Expand Up @@ -36,7 +39,10 @@ def flatten_2d(li):
@pytest.mark.parametrize("model", ["facebook/opt-125m"])
@pytest.mark.parametrize("block_size", [16])
@pytest.mark.parametrize("max_num_seqs", [256])
def test_auto_prefix_caching(model: str, block_size: int, max_num_seqs: int):
@pytest.mark.parametrize("concurrent_lora_int_ids",
[[None], [1], [None, 1], [None, 1, 2], [1, 2]])
def test_auto_prefix_caching(model: str, block_size: int, max_num_seqs: int,
concurrent_lora_int_ids: List[Optional[int]]):

tokenizer = TokenizerGroup(
tokenizer_id="facebook/opt-125m",
Expand All @@ -48,20 +54,30 @@ def test_auto_prefix_caching(model: str, block_size: int, max_num_seqs: int):
hashes = []

for prefix in prefixes:
hashes.append([])
prompts = [prefix + prompt for prompt in sample_prompts]
seq_id = 0
for prompt in prompts:
hashes[-1].append([])
prompt_token_ids = tokenizer.encode(prompt)
seq = Sequence(seq_id, prompt, prompt_token_ids, block_size,
tokenizer.tokenizer.eos_token_id)

num_blocks = len(prompt_token_ids) // block_size
for idx in range(num_blocks):
hashes[-1][-1].append(seq.hash_of_block(idx))

seq_id += 1
for lora_int_id in concurrent_lora_int_ids:
lora_request = None

if lora_int_id is not None:
lora_request = LoRARequest(
f"example_lora_{lora_int_id}",
lora_int_id,
f"example/path/to/lora_{lora_int_id}",
)

hashes.append([])
prompts = [prefix + prompt for prompt in sample_prompts]
seq_id = 0
for prompt in prompts:
hashes[-1].append([])
prompt_token_ids = tokenizer.encode(prompt)
seq = Sequence(seq_id, prompt, prompt_token_ids, block_size,
tokenizer.tokenizer.eos_token_id, lora_request)

num_blocks = len(prompt_token_ids) // block_size
for idx in range(num_blocks):
hashes[-1][-1].append(seq.hash_of_block(idx))

seq_id += 1

# Check that hashes made with two prefixes with different first blocks are
# different everywhere.
Expand Down
3 changes: 2 additions & 1 deletion vllm/sequence.py
Original file line number Diff line number Diff line change
Expand Up @@ -175,7 +175,8 @@ def hash_of_block(self, logical_idx: int) -> int:
# TODO: The current hashing function is O(L^2). We should optimize
# this in the future.
num_tokens = self.num_hashed_tokens_of_block(logical_idx)
return hash(tuple(self.data.get_token_ids()[0:num_tokens]))
return hash(
(tuple(self.data.get_token_ids()[0:num_tokens]), self.lora_int_id))

def num_hashed_tokens_of_block(self, logical_idx: int):
return logical_idx * self.block_size + self.block_size
Expand Down
Loading