- 
          
- 
                Notifications
    You must be signed in to change notification settings 
- Fork 10.9k
[NVIDIA] Support Flashinfer TRT-LLM Prefill Attention Kernel #22095
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
          
     Merged
      
      
            vllm-bot
  merged 3 commits into
  vllm-project:main
from
elvischenv:elvischenv/flashinfer-prefill-trtllm-attn
  
      
      
   
  Aug 5, 2025 
      
    
      
        
          +701
        
        
          −235
        
        
          
        
      
    
  
  
     Merged
                    Changes from all commits
      Commits
    
    
            Show all changes
          
          
            3 commits
          
        
        Select commit
          Hold shift + click to select a range
      
      
    File filter
Filter by extension
Conversations
          Failed to load comments.   
        
        
          
      Loading
        
  Jump to
        
          Jump to file
        
      
      
          Failed to load files.   
        
        
          
      Loading
        
  Diff view
Diff view
There are no files selected for viewing
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              
        
          
          
            250 changes: 250 additions & 0 deletions
          
          250 
        
  benchmarks/kernels/benchmark_trtllm_prefill_attention.py
  
  
      
      
   
        
      
      
    
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              
              | Original file line number | Diff line number | Diff line change | 
|---|---|---|
| @@ -0,0 +1,250 @@ | ||
| # SPDX-License-Identifier: Apache-2.0 | ||
| # SPDX-FileCopyrightText: Copyright contributors to the vLLM project | ||
|  | ||
| import csv | ||
| import os | ||
| import random | ||
| from datetime import datetime | ||
|  | ||
| import flashinfer | ||
| import torch | ||
|  | ||
| FLOAT32_BYTES = torch.finfo(torch.float).bits // 8 | ||
|  | ||
| # KV Cache Layout for TRT-LLM | ||
| # kv_cache_shape = (num_blocks, 2, num_kv_heads, page_size, head_dim) | ||
|  | ||
|  | ||
| def to_float8(x, dtype=torch.float8_e4m3fn): | ||
| finfo = torch.finfo(dtype) | ||
| min_val, max_val = x.aminmax() | ||
| amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12) | ||
| scale = finfo.max / amax * 0.1 | ||
| x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max) | ||
| return x_scl_sat.to(dtype), scale.float().reciprocal() | ||
|  | ||
|  | ||
| @torch.no_grad() | ||
| def benchmark_prefill( | ||
| num_seqs, | ||
| max_seq_len, | ||
| page_size=16, | ||
| dtype=torch.bfloat16, | ||
| kv_layout="HND", | ||
| num_kv_heads=8, | ||
| kv_cache_dtype="auto", | ||
| head_dim=128, | ||
| warmup=10, | ||
| trials=20, | ||
| ): | ||
| torch.set_default_device("cuda") | ||
| torch.manual_seed(0) | ||
|  | ||
| HEAD_GRP_SIZE = 8 | ||
| MAX_SEQ_LEN = max_seq_len | ||
|  | ||
| # large number to reduce kv_cache reuse | ||
| NUM_BLOCKS = int(256000 / page_size) | ||
|  | ||
| workspace_buffer = torch.empty(1024 * 1024 * 1024, dtype=torch.int8) | ||
|  | ||
| num_qo_heads = num_kv_heads * HEAD_GRP_SIZE | ||
| sm_scale = float(1.0 / (head_dim**0.5)) | ||
|  | ||
| q_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_seqs)] | ||
| q_lens[-1] = MAX_SEQ_LEN | ||
| max_q_len = max(q_lens) | ||
| q_indptr = torch.cat( | ||
| [ | ||
| torch.tensor([0], dtype=torch.int32), | ||
| torch.cumsum( | ||
| torch.tensor(q_lens, dtype=torch.int32), dim=0, dtype=torch.int32 | ||
| ), | ||
| ] | ||
| ) | ||
| q = torch.randn(sum(q_lens), num_qo_heads, head_dim, dtype=dtype) | ||
|  | ||
| kv_lens = [random.randint(0, MAX_SEQ_LEN) for _ in range(num_seqs)] | ||
| kv_lens[-1] = MAX_SEQ_LEN | ||
|  | ||
| seq_lens = [q_len + kv_len for q_len, kv_len in zip(q_lens, kv_lens)] | ||
| max_seq_len = max(seq_lens) | ||
| seq_lens_tensor = torch.tensor(seq_lens, dtype=torch.int32) | ||
|  | ||
| max_num_blocks_per_seq = (max_seq_len + page_size - 1) // page_size | ||
| block_tables = torch.randint( | ||
| 0, NUM_BLOCKS, (num_seqs, max_num_blocks_per_seq), dtype=torch.int32 | ||
| ) | ||
|  | ||
| kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, page_size, head_dim) | ||
| kv_cache = torch.randn(size=kv_cache_shape, dtype=dtype) | ||
| k_scale = v_scale = 1.0 | ||
|  | ||
| if kv_cache_dtype.startswith("fp8"): | ||
| kv_cache, _ = to_float8(kv_cache) | ||
|  | ||
| output_trtllm = torch.empty(q.shape, dtype=dtype) | ||
|  | ||
| kv_indptr = [0] | ||
| kv_indices = [] | ||
| kv_last_page_lens = [] | ||
| for i in range(num_seqs): | ||
| seq_len = seq_lens[i] | ||
| assert seq_len > 0 | ||
| num_blocks = (seq_len + page_size - 1) // page_size | ||
| kv_indices.extend(block_tables[i, :num_blocks]) | ||
| kv_indptr.append(kv_indptr[-1] + num_blocks) | ||
| kv_last_page_len = seq_len % page_size | ||
| if kv_last_page_len == 0: | ||
| kv_last_page_len = page_size | ||
| kv_last_page_lens.append(kv_last_page_len) | ||
|  | ||
| kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32) | ||
| kv_indices = torch.tensor(kv_indices, dtype=torch.int32) | ||
| kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32) | ||
|  | ||
| output_baseline = torch.empty(q.shape, dtype=dtype) | ||
|  | ||
| wrapper = flashinfer.BatchPrefillWithPagedKVCacheWrapper( | ||
| workspace_buffer, kv_layout | ||
| ) | ||
| wrapper.plan( | ||
| q_indptr, | ||
| kv_indptr, | ||
| kv_indices, | ||
| kv_last_page_lens, | ||
| num_qo_heads, | ||
| num_kv_heads, | ||
| head_dim, | ||
| page_size, | ||
| causal=True, | ||
| sm_scale=sm_scale, | ||
| q_data_type=dtype, | ||
| kv_data_type=kv_cache.dtype, | ||
| ) | ||
|  | ||
| def time_fn(fn, warmup=10, trials=20): | ||
| torch.cuda.synchronize() | ||
| start = torch.cuda.Event(enable_timing=True) | ||
| end = torch.cuda.Event(enable_timing=True) | ||
| times = [] | ||
| for i in range(warmup): | ||
| fn() | ||
| for i in range(trials): | ||
| start.record() | ||
| fn() | ||
| end.record() | ||
| torch.cuda.synchronize() | ||
| times.append(start.elapsed_time(end)) # ms | ||
| return sum(times) / len(times), torch.std(torch.tensor(times)) | ||
|  | ||
| def baseline_prefill(): | ||
| return wrapper.run( | ||
| q, kv_cache, k_scale=k_scale, v_scale=v_scale, out=output_baseline | ||
| ) | ||
|  | ||
| def trt_prefill(): | ||
| return flashinfer.prefill.trtllm_batch_context_with_kv_cache( | ||
| query=q, | ||
| kv_cache=kv_cache, | ||
| workspace_buffer=workspace_buffer, | ||
| block_tables=block_tables, | ||
| seq_lens=seq_lens_tensor, | ||
| max_q_len=max_q_len, | ||
| max_kv_len=max_seq_len, | ||
| bmm1_scale=k_scale * sm_scale, | ||
| bmm2_scale=v_scale, | ||
| batch_size=num_seqs, | ||
| cum_seq_lens_q=q_indptr, | ||
| cum_seq_lens_kv=kv_indptr, | ||
| out=output_trtllm, | ||
| ) | ||
|  | ||
| trt_mean, trt_std = time_fn(trt_prefill) | ||
| baseline_mean, baseline_std = time_fn(baseline_prefill) | ||
|  | ||
| # Calculate percentage speedup (positive means TRT is faster) | ||
| speedup_percent = (baseline_mean - trt_mean) / baseline_mean | ||
|  | ||
| print( | ||
| f"\t{num_seqs}\t{max_seq_len}\t{trt_mean:.5f}\t{trt_std.item():.5f}" | ||
| f"\t{baseline_mean:.5f}\t{baseline_std.item():.5f}\t{speedup_percent:.5f}" | ||
| ) | ||
|  | ||
| # Return results for CSV writing | ||
| return { | ||
| "num_seqs": num_seqs, | ||
| "trt_mean": trt_mean, | ||
| "trt_std": trt_std.item(), | ||
| "baseline_mean": baseline_mean, | ||
| "baseline_std": baseline_std.item(), | ||
| "speedup_percent": speedup_percent, | ||
| "q_dtype": str(dtype), | ||
| "kv_cache_dtype": kv_cache_dtype, | ||
| "page_size": page_size, | ||
| "num_kv_heads": num_kv_heads, | ||
| "head_dim": head_dim, | ||
| "max_seq_len": max_seq_len, | ||
| } | ||
|  | ||
|  | ||
| def write_results_to_csv(results, filename=None): | ||
| """Write benchmark results to CSV file.""" | ||
| if filename is None: | ||
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | ||
| filename = f"flashinfer_trtllm_benchmark_{timestamp}.csv" | ||
|  | ||
| fieldnames = [ | ||
| "num_seqs", | ||
| "trt_mean", | ||
| "trt_std", | ||
| "baseline_mean", | ||
| "baseline_std", | ||
| "speedup_percent", | ||
| "q_dtype", | ||
| "kv_cache_dtype", | ||
| "page_size", | ||
| "num_kv_heads", | ||
| "head_dim", | ||
| "max_seq_len", | ||
| ] | ||
|  | ||
| file_exists = os.path.exists(filename) | ||
|  | ||
| with open(filename, "a", newline="") as csvfile: | ||
| writer = csv.DictWriter(csvfile, fieldnames=fieldnames) | ||
|  | ||
| if not file_exists: | ||
| writer.writeheader() | ||
|  | ||
| for result in results: | ||
| writer.writerow(result) | ||
|  | ||
| print(f"Results written to {filename}") | ||
|  | ||
|  | ||
| if __name__ == "__main__": | ||
| num_seqs = [1, 4, 8, 16, 32, 64, 128, 256] | ||
| max_seq_lens = [1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072] | ||
| all_results = [] | ||
|  | ||
| print( | ||
| "Running benchmark for q_dtype = bfloat16, kv_cache_dtype: bfloat16, " | ||
| "output_dtype: bfloat16" | ||
| ) | ||
| print( | ||
| "\tnum_seqs\tmax_seq_len\ttrt_mean\ttrt_std\tbaseline_mean\t" | ||
| "baseline_std\tspeedup_percent" | ||
| ) | ||
| for max_seq_len in max_seq_lens: | ||
| for bs in num_seqs: | ||
| result = benchmark_prefill( | ||
| bs, | ||
| max_seq_len, | ||
| dtype=torch.bfloat16, | ||
| kv_cache_dtype="auto", | ||
| ) | ||
| all_results.append(result) | ||
|  | ||
| # Write all results to CSV | ||
| write_results_to_csv(all_results) | ||
      
      Oops, something went wrong.
        
    
  
  Add this suggestion to a batch that can be applied as a single commit.
  This suggestion is invalid because no changes were made to the code.
  Suggestions cannot be applied while the pull request is closed.
  Suggestions cannot be applied while viewing a subset of changes.
  Only one suggestion per line can be applied in a batch.
  Add this suggestion to a batch that can be applied as a single commit.
  Applying suggestions on deleted lines is not supported.
  You must change the existing code in this line in order to create a valid suggestion.
  Outdated suggestions cannot be applied.
  This suggestion has been applied or marked resolved.
  Suggestions cannot be applied from pending reviews.
  Suggestions cannot be applied on multi-line comments.
  Suggestions cannot be applied while the pull request is queued to merge.
  Suggestion cannot be applied right now. Please check back later.
  
    
  
    
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is this still true? Please update the comment if more head group sizes are supported and change the logic for the head group ratio in
use_trtllm_attentionThere was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks. Fixed in the latest commit.