Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support OpenAI API server in benchmark_serving.py #2172

Merged
merged 2 commits into from
Jan 19, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -181,3 +181,6 @@ _build/
# hip files generated by PyTorch
*.hip
*_hip*

# Benchmark dataset
*.json
81 changes: 49 additions & 32 deletions benchmarks/benchmark_serving.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@

import aiohttp
import numpy as np
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
from vllm.transformers_utils.tokenizer import get_tokenizer

Expand All @@ -40,15 +41,10 @@ def sample_requests(
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [
data for data in dataset
if len(data["conversations"]) >= 2
]
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [
(data["conversations"][0]["value"], data["conversations"][1]["value"])
for data in dataset
]
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]

# Tokenize the prompts and completions.
prompts = [prompt for prompt, _ in dataset]
Expand Down Expand Up @@ -98,6 +94,7 @@ async def get_request(

async def send_request(
backend: str,
model: str,
api_url: str,
prompt: str,
prompt_len: int,
Expand All @@ -120,6 +117,8 @@ async def send_request(
"ignore_eos": True,
"stream": False,
}
if model is not None:
pload["model"] = model
elif backend == "tgi":
assert not use_beam_search
params = {
Expand All @@ -137,7 +136,8 @@ async def send_request(
timeout = aiohttp.ClientTimeout(total=3 * 3600)
async with aiohttp.ClientSession(timeout=timeout) as session:
while True:
async with session.post(api_url, headers=headers, json=pload) as response:
async with session.post(api_url, headers=headers,
json=pload) as response:
chunks = []
async for chunk, _ in response.content.iter_chunks():
chunks.append(chunk)
Expand All @@ -155,18 +155,20 @@ async def send_request(

async def benchmark(
backend: str,
model: str,
api_url: str,
input_requests: List[Tuple[str, int, int]],
best_of: int,
use_beam_search: bool,
request_rate: float,
) -> None:
tasks: List[asyncio.Task] = []
async for request in get_request(input_requests, request_rate):
async for request in tqdm(get_request(input_requests, request_rate),
total=len(input_requests)):
prompt, prompt_len, output_len = request
task = asyncio.create_task(send_request(backend, api_url, prompt,
prompt_len, output_len,
best_of, use_beam_search))
task = asyncio.create_task(
send_request(backend, model, api_url, prompt, prompt_len,
output_len, best_of, use_beam_search))
tasks.append(task)
await asyncio.gather(*tasks)

Expand All @@ -176,13 +178,15 @@ def main(args: argparse.Namespace):
random.seed(args.seed)
np.random.seed(args.seed)

api_url = f"http://{args.host}:{args.port}/generate"
tokenizer = get_tokenizer(args.tokenizer, trust_remote_code=args.trust_remote_code)
api_url = f"http://{args.host}:{args.port}{args.endpoint}"
tokenizer = get_tokenizer(args.tokenizer,
trust_remote_code=args.trust_remote_code)
input_requests = sample_requests(args.dataset, args.num_prompts, tokenizer)

benchmark_start_time = time.perf_counter()
asyncio.run(benchmark(args.backend, api_url, input_requests, args.best_of,
args.use_beam_search, args.request_rate))
asyncio.run(
benchmark(args.backend, args.model, api_url, input_requests,
args.best_of, args.use_beam_search, args.request_rate))
benchmark_end_time = time.perf_counter()
benchmark_time = benchmark_end_time - benchmark_start_time
print(f"Total time: {benchmark_time:.2f} s")
Expand All @@ -196,38 +200,51 @@ def main(args: argparse.Namespace):
for prompt_len, output_len, latency in REQUEST_LATENCY
])
print(f"Average latency per token: {avg_per_token_latency:.2f} s")
avg_per_output_token_latency = np.mean([
latency / output_len
for _, output_len, latency in REQUEST_LATENCY
])
avg_per_output_token_latency = np.mean(
[latency / output_len for _, output_len, latency in REQUEST_LATENCY])
print("Average latency per output token: "
f"{avg_per_output_token_latency:.2f} s")


if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Benchmark the online serving throughput.")
parser.add_argument("--backend", type=str, default="vllm",
parser.add_argument("--backend",
type=str,
default="vllm",
choices=["vllm", "tgi"])
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--dataset", type=str, required=True,
parser.add_argument("--endpoint", type=str, default="/generate")
parser.add_argument("--model", type=str, default=None)
parser.add_argument("--dataset",
type=str,
required=True,
help="Path to the dataset.")
parser.add_argument("--tokenizer", type=str, required=True,
parser.add_argument("--tokenizer",
type=str,
required=True,
help="Name or path of the tokenizer.")
parser.add_argument("--best-of", type=int, default=1,
parser.add_argument("--best-of",
type=int,
default=1,
help="Generates `best_of` sequences per prompt and "
"returns the best one.")
"returns the best one.")
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument("--num-prompts", type=int, default=1000,
parser.add_argument("--num-prompts",
type=int,
default=1000,
help="Number of prompts to process.")
parser.add_argument("--request-rate", type=float, default=float("inf"),
parser.add_argument("--request-rate",
type=float,
default=float("inf"),
help="Number of requests per second. If this is inf, "
"then all the requests are sent at time 0. "
"Otherwise, we use Poisson process to synthesize "
"the request arrival times.")
"then all the requests are sent at time 0. "
"Otherwise, we use Poisson process to synthesize "
"the request arrival times.")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument('--trust-remote-code', action='store_true',
parser.add_argument('--trust-remote-code',
action='store_true',
help='trust remote code from huggingface')
args = parser.parse_args()
main(args)
Loading