Skip to content

Revert "[v1] Add fp32 support to v1 engine through flex attn" #19404

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 10, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 0 additions & 28 deletions tests/kernels/attention/test_attention_selector.py
Original file line number Diff line number Diff line change
Expand Up @@ -183,34 +183,6 @@ def test_env(
assert backend.get_name() == expected


@pytest.mark.parametrize("device", ["cpu", "cuda"])
@pytest.mark.parametrize("use_v1", [True, False])
def test_fp32_fallback(
device: str,
use_v1: bool,
monkeypatch: pytest.MonkeyPatch,
):
"""Test attention backend selection with fp32."""
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "1" if use_v1 else "0")

if device == "cpu":
with patch("vllm.attention.selector.current_platform",
CpuPlatform()):
backend = get_attn_backend(16, torch.float32, torch.float32,
16, False)
assert (backend.get_name() == "TORCH_SDPA_VLLM_V1"
if use_v1 else "TORCH_SDPA")

elif device == "cuda":
with patch("vllm.attention.selector.current_platform",
CudaPlatform()):
backend = get_attn_backend(16, torch.float32, torch.float32,
16, False)
assert (backend.get_name() == "FLEX_ATTENTION"
if use_v1 else "XFORMERS")


def test_flash_attn(monkeypatch: pytest.MonkeyPatch):
"""Test FlashAttn validation."""
# TODO: When testing for v1, pipe in `use_v1` as an argument to
Expand Down
6 changes: 0 additions & 6 deletions tests/v1/worker/test_gpu_model_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,6 @@
import random

import pytest
import torch

from vllm.attention import Attention
from vllm.config import (CacheConfig, ModelConfig, ParallelConfig,
Expand Down Expand Up @@ -400,7 +399,6 @@ def test_load_model_weights_inplace(dist_init, model_runner, model_runner_2):


def test_init_kv_cache_with_kv_sharing_invalid_target_layer_order():
torch.set_default_dtype(torch.float16)
layer_0 = "model.layers.0.self_attn.attn"
layer_1 = "model.layers.1.self_attn.attn"
error_msg = f"{layer_1} must come before the current layer"
Expand Down Expand Up @@ -429,7 +427,6 @@ def test_init_kv_cache_with_kv_sharing_invalid_target_layer_order():


def test_init_kv_cache_with_kv_sharing_target_layer_not_exist():
torch.set_default_dtype(torch.float16)
layer_0 = "model.layers.0.self_attn.attn"
layer_1 = "model.layers.1.self_attn.attn"
invalid_layer = "model.layers.0.cross_attn.attn"
Expand Down Expand Up @@ -458,7 +455,6 @@ def test_init_kv_cache_with_kv_sharing_target_layer_not_exist():


def test_init_kv_cache_with_kv_sharing_target_same_as_current():
torch.set_default_dtype(torch.float16)
layer_0 = "model.layers.0.self_attn.attn"
layer_1 = "model.layers.1.self_attn.attn"
error_msg = f"{layer_1} cannot be the same as the current layer"
Expand Down Expand Up @@ -487,7 +483,6 @@ def test_init_kv_cache_with_kv_sharing_target_same_as_current():


def test_init_kv_cache_without_kv_sharing():
torch.set_default_dtype(torch.float16)
layer_0 = "model.layers.0.self_attn.attn"
layer_1 = "model.layers.1.self_attn.attn"
vllm_config = get_vllm_config()
Expand Down Expand Up @@ -555,7 +550,6 @@ def test_init_kv_cache_without_kv_sharing():


def test_init_kv_cache_with_kv_sharing_valid():
torch.set_default_dtype(torch.float16)
layer_0 = "model.layers.0.self_attn.attn"
layer_1 = "model.layers.1.self_attn.attn"
vllm_config = get_vllm_config()
Expand Down
7 changes: 7 additions & 0 deletions vllm/engine/arg_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -1337,6 +1337,13 @@ def _is_v1_supported_oracle(self, model_config: ModelConfig) -> bool:
recommend_to_remove=False)
return False

# Only Fp16 and Bf16 dtypes since we only support FA.
V1_SUPPORTED_DTYPES = [torch.bfloat16, torch.float16]
if model_config.dtype not in V1_SUPPORTED_DTYPES:
_raise_or_fallback(feature_name=f"--dtype {model_config.dtype}",
recommend_to_remove=False)
return False

# No Embedding Models so far.
if model_config.task not in ["generate"]:
_raise_or_fallback(feature_name=f"--task {model_config.task}",
Expand Down
4 changes: 0 additions & 4 deletions vllm/platforms/cuda.py
Original file line number Diff line number Diff line change
Expand Up @@ -233,10 +233,6 @@ def get_attn_backend_cls(cls, selected_backend, head_size, dtype,
logger.info_once("Using Triton backend on V1 engine.")
return ("vllm.v1.attention.backends."
"triton_attn.TritonAttentionBackend")
if dtype not in (torch.float16, torch.bfloat16):
logger.info_once(
f"Using FlexAttenion backend for {dtype} on V1 engine.")
return "vllm.v1.attention.backends.flex_attention.FlexAttentionBackend" # noqa: E501
if cls.is_device_capability(100):
# Prefer FlashInfer for V1 on Blackwell GPUs if installed
try:
Expand Down