Skip to content

[Bugfix] Fix Minicpm-O-int4 GPTQ model inference #17397

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Apr 29, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 35 additions & 1 deletion vllm/model_executor/models/minicpmo.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,12 +28,16 @@

import torch
from torch import nn
from transformers import BatchFeature
from transformers import BatchFeature, PretrainedConfig
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.models.whisper.modeling_whisper import (
ACT2FN, WHISPER_ATTENTION_CLASSES, WhisperConfig, WhisperEncoder)

from vllm.config import VllmConfig
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.quantization.gptq import GPTQConfig
from vllm.model_executor.layers.quantization.gptq_marlin import (
GPTQMarlinConfig)
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
NestedTensors)
Expand Down Expand Up @@ -512,6 +516,36 @@ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):

self.audio_token_id = None

def _maybe_ignore_quant_config(self, quant_config: QuantizationConfig):
# GPTQ configs do not have a list of ignored modules, however AutoGPTQ
# seems to avoid vision encoder sections for some models.
# See: https://huggingface.co/openbmb/MiniCPM-o-2_6-int4
if isinstance(quant_config, (GPTQConfig, GPTQMarlinConfig)):
return None
return quant_config

def init_vision_module(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> nn.Module:
# MiniCPMO GPTQ model leave vpm unquantized.
quant_config = self._maybe_ignore_quant_config(quant_config)
return super().init_vision_module(config, quant_config, prefix)

def init_resampler(
self,
embed_dim: int,
vision_dim: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> nn.Module:
# MiniCPMO GPTQ model leave resampler unquantized.
quant_config = self._maybe_ignore_quant_config(quant_config)
return super().init_resampler(embed_dim, vision_dim, quant_config,
prefix)

def init_audio_module(self, *, vllm_config: VllmConfig, prefix: str = ""):
# Do not use parameters temporarily
audio_config = self.config.audio_config
Expand Down
2 changes: 1 addition & 1 deletion vllm/model_executor/models/minicpmv.py
Original file line number Diff line number Diff line change
Expand Up @@ -1181,7 +1181,7 @@ def init_llm(
def init_vision_module(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig],
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> nn.Module:
model = Idefics2VisionTransformer(config.vision_config,
Expand Down