Skip to content

[Misc] Refine ray_serve_deepseek example #17204

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Apr 25, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 29 additions & 25 deletions examples/online_serving/ray_serve_deepseek.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,37 +8,41 @@
"""

from ray import serve
from ray.serve.llm import LLMConfig, LLMRouter, LLMServer
from ray.serve.llm import LLMConfig, build_openai_app

llm_config = LLMConfig(
model_loading_config=dict(
model_id="deepseek",
# Change to model download path
model_source="/path/to/the/model",
),
deployment_config=dict(autoscaling_config=dict(
min_replicas=1,
max_replicas=1,
)),
model_loading_config={
"model_id": "deepseek",
# Since DeepSeek model is huge, it is recommended to pre-download
# the model to local disk, say /path/to/the/model and specify:
# model_source="/path/to/the/model"
"model_source": "deepseek-ai/DeepSeek-R1",
},
deployment_config={
"autoscaling_config": {
"min_replicas": 1,
"max_replicas": 1,
}
},
# Change to the accelerator type of the node
accelerator_type="H100",
runtime_env=dict(env_vars=dict(VLLM_USE_V1="1")),
runtime_env={"env_vars": {
"VLLM_USE_V1": "1"
}},
# Customize engine arguments as needed (e.g. vLLM engine kwargs)
engine_kwargs=dict(
tensor_parallel_size=8,
pipeline_parallel_size=2,
gpu_memory_utilization=0.92,
dtype="auto",
max_num_seqs=40,
max_model_len=16384,
enable_chunked_prefill=True,
enable_prefix_caching=True,
trust_remote_code=True,
),
engine_kwargs={
"tensor_parallel_size": 8,
"pipeline_parallel_size": 2,
"gpu_memory_utilization": 0.92,
"dtype": "auto",
"max_num_seqs": 40,
"max_model_len": 16384,
"enable_chunked_prefill": True,
"enable_prefix_caching": True,
"trust_remote_code": True,
},
)

# Deploy the application
deployment = LLMServer.as_deployment(
llm_config.get_serve_options(name_prefix="vLLM:")).bind(llm_config)
llm_app = LLMRouter.as_deployment().bind([deployment])
llm_app = build_openai_app({"llm_configs": [llm_config]})
serve.run(llm_app)