Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 33 additions & 1 deletion docs/source/contributing/model/multimodal.md
Original file line number Diff line number Diff line change
Expand Up @@ -859,7 +859,7 @@ prompt_tokens, prompts_length = _tokenize_prompts_with_image_and_batch(
)
```

To accommodate this, instead of a string you can return an instance of `PromptUpdateDetails`
To accommodate this, instead of a string you can return an instance of {class}`~vllm.multimodal.processing.PromptUpdateDetails`
with different `full` and `feature` attributes:

```python
Expand Down Expand Up @@ -948,3 +948,35 @@ to register them to the multi-modal registry:
+ dummy_inputs=YourDummyInputsBuilder)
class YourModelForImage2Seq(nn.Module, SupportsMultiModal):
```

## Notes

### Inserting feature tokens without replacement

Some HF processors directly insert feature tokens without replacing anything in the original prompt. In that case, you can use {class}`~vllm.multimodal.processing.PromptInsertion` instead of {class}`~vllm.multimodal.processing.PromptReplacement` inside {meth}`~vllm.multimodal.processing.BaseMultiModalProcessor._get_prompt_updates`.

Examples:

- BLIP-2 (insert at start of prompt): <gh-file:vllm/model_executor/models/blip2.py>
- Florence2 (insert at start of prompt): <gh-file:vllm/model_executor/models/florence2.py>
- Molmo (insert after `<|endoftext|>` token): <gh-file:vllm/model_executor/models/molmo.py>

### Handling prompt updates unrelated to multi-modal data

{meth}`~vllm.multimodal.processing.BaseMultiModalProcessor._get_prompt_updates` assumes that each application of prompt update corresponds to one multi-modal item. If the HF processor performs additional processing regardless of how many multi-modal items there are, you should override {meth}`~vllm.multimodal.processing.BaseMultiModalProcessor._apply_hf_processor_tokens_only` so that the processed token inputs are consistent with the result of applying the HF processor on text inputs. This is because token inputs bypass the HF processor according to [our design](#mm-processing).

Examples:

- Chameleon (appends `sep_token`): <gh-file:vllm/model_executor/models/chameleon.py>
- Fuyu (appends `boa_token`): <gh-file:vllm/model_executor/models/fuyu.py>
- Molmo (applies chat template which is not defined elsewhere): <gh-file:vllm/model_executor/models/molmo.py>

### Custom HF processor

Some models don't define a HF processor class on HF Hub. In that case, you can define a custom HF processor that has the same call signature as HF processors and pass it to {meth}`~vllm.multimodal.processing.BaseMultiModalProcessor._call_hf_processor`.

Examples:

- DeepSeek-VL2: <gh-file:vllm/model_executor/models/deepseek_vl2.py>
- InternVL: <gh-file:vllm/model_executor/models/internvl.py>
- Qwen-VL: <gh-file:vllm/model_executor/models/qwen_vl.py>