Closed
Description
Your current environment
The output of `python collect_env.py`
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Red Hat Enterprise Linux release 8.9 (Ootpa) (x86_64)
GCC version: (GCC) 8.5.0 20210514 (Red Hat 8.5.0-20)
Clang version: Could not collect
CMake version: version 3.30.2
Libc version: glibc-2.28
Python version: 3.10.4 (main, Mar 31 2022, 08:41:55) [GCC 7.5.0] (64-bit runtime)
Python platform: Linux-4.18.0-513.11.1.el8_9.x86_64-x86_64-with-glibc2.28
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA A100-SXM4-80GB
Nvidia driver version: 535.54.03
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Thread(s) per core: 1
Core(s) per socket: 64
Socket(s): 2
NUMA node(s): 2
Vendor ID: AuthenticAMD
CPU family: 25
Model: 1
Model name: AMD EPYC 7763 64-Core Processor
Stepping: 1
CPU MHz: 2850.418
CPU max MHz: 3529.0520
CPU min MHz: 1500.0000
BogoMIPS: 4890.70
Virtualization: AMD-V
L1d cache: 32K
L1i cache: 32K
L2 cache: 512K
L3 cache: 32768K
NUMA node0 CPU(s): 0-63
NUMA node1 CPU(s): 64-127
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd amd_ppin brs arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm
Versions of relevant libraries:
[pip3] mypy==1.11.1
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==12.555.43
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.6.20
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pyzmq==26.1.0
[pip3] sentence-transformers==3.0.1
[pip3] torch==2.4.0
[pip3] torchvision==0.19.0
[pip3] transformers==4.45.1
[pip3] transformers-stream-generator==0.0.5
[pip3] triton==3.0.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: dev
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 NIC9 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X SYS SYS SYS SYS PXB PXB SYS SYS SYS SYS 105 0-1 N/A
NIC0 SYS X PIX SYS SYS SYS SYS SYS SYS SYS SYS
NIC1 SYS PIX X SYS SYS SYS SYS SYS SYS SYS SYS
NIC2 SYS SYS SYS X PXB SYS SYS SYS SYS SYS SYS
NIC3 SYS SYS SYS PXB X SYS SYS SYS SYS SYS SYS
NIC4 PXB SYS SYS SYS SYS X PXB SYS SYS SYS SYS
NIC5 PXB SYS SYS SYS SYS PXB X SYS SYS SYS SYS
NIC6 SYS SYS SYS SYS SYS SYS SYS X PIX SYS SYS
NIC7 SYS SYS SYS SYS SYS SYS SYS PIX X SYS SYS
NIC8 SYS SYS SYS SYS SYS SYS SYS SYS SYS X PXB
NIC9 SYS SYS SYS SYS SYS SYS SYS SYS SYS PXB X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
NIC8: mlx5_8
NIC9: mlx5_9
Model Input Dumps
No response
🐛 Describe the bug
There's a small bug in MiniCPM-V
if a prompt is provided, but the user mistakenly omits the image placeholder. Example:
from vllm import LLM, SamplingParams
from PIL import Image
model_name = "openbmb/MiniCPM-V-2_6"
llm = LLM(
model=model_name,
trust_remote_code=True,
)
sampling_params = SamplingParams()
img = Image.open("cherry_blossom.jpg")
outputs = llm.generate(
{
"prompt": "I have no image tag",
"multi_modal_data": {"image": img}
},
sampling_params=sampling_params
)
raises UnboundLocalError: local variable 'token_ids' referenced before assignment
, because the variable is only defined if the prompt is None
(here), but it's used if there are no image tags here.
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.