Skip to content

[Bug]: TypeError in XFormersMetadata  #4399

Closed as not planned
Closed as not planned
@skonto

Description

@skonto

Your current environment

python collect_env.py
Collecting environment information...
PyTorch version: 2.2.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Fedora release 36 (Thirty Six) (x86_64)
GCC version: (GCC) 12.2.1 20221121 (Red Hat 12.2.1-4)
Clang version: Could not collect
CMake version: version 3.29.2
Libc version: glibc-2.35

Python version: 3.10.7 (main, Sep  7 2022, 00:00:00) [GCC 12.2.1 20220819 (Red Hat 12.2.1-1)] (64-bit runtime)
Python platform: Linux-6.2.15-100.fc36.x86_64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: Quadro T1000
Nvidia driver version: 530.41.03
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Address sizes:                   39 bits physical, 48 bits virtual
Byte Order:                      Little Endian
CPU(s):                          12
On-line CPU(s) list:             0-11
Vendor ID:                       GenuineIntel
Model name:                      Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
CPU family:                      6
Model:                           158
Thread(s) per core:              2
Core(s) per socket:              6
Socket(s):                       1
Stepping:                        10
CPU(s) scaling MHz:              89%
CPU max MHz:                     4500.0000
CPU min MHz:                     800.0000
BogoMIPS:                        5199.98
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust sgx bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp sgx_lc md_clear flush_l1d arch_capabilities
Virtualization:                  VT-x
L1d cache:                       192 KiB (6 instances)
L1i cache:                       192 KiB (6 instances)
L2 cache:                        1.5 MiB (6 instances)
L3 cache:                        12 MiB (1 instance)
NUMA node(s):                    1
NUMA node0 CPU(s):               0-11
Vulnerability Itlb multihit:     KVM: Mitigation: VMX disabled
Vulnerability L1tf:              Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable
Vulnerability Mds:               Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Meltdown:          Mitigation; PTI
Vulnerability Mmio stale data:   Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Retbleed:          Mitigation; IBRS
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; IBRS, IBPB conditional, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds:             Mitigation; Microcode
Vulnerability Tsx async abort:   Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.19.3
[pip3] torch==2.2.1
[pip3] triton==2.2.0
[pip3] vllm-nccl-cu12==2.18.1.0.4.0
[conda] Could not collectROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.4.1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0	CPU Affinity	NUMA Affinity
GPU0	 X 	0-11		N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

🐛 Describe the bug

Running the following creates an error:

docker run --runtime nvidia    -v ~/.cache/huggingface:/root/.cache/huggingface     --env "HUGGING_FACE_HUB_TOKEN=..."     -p 8000:8000     --ipc=host     vllm/vllm-openai:latest     --model meta-llama/Meta-Llama-3-8B-Instruct --device=cpu

with the following prompt:

curl http://localhost:8000/v1/completions -H "Content-Type: application/json" -d '{
    "model": "meta-llama/Meta-Llama-3-8B-Instruct",
    "prompt": "..."
}'
TypeError: XFormersMetadata.__init__() got an unexpected keyword argument 'num_prefills'

I can see the same error without the docker image using:
HF_TOKEN=... python -m vllm.entrypoints.openai.api_server --device=cpu --model meta-llama/Meta-Llama-3-8B-Instruct

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't workingstaleOver 90 days of inactivity

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions