-
-
Couldn't load subscription status.
- Fork 10.9k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of python collect_env.py
Collecting environment information...
==============================
System Info
==============================
OS : Amazon Linux 2023.7.20250527 (x86_64)
GCC version : (GCC) 11.5.0 20240719 (Red Hat 11.5.0-5)
Clang version : Could not collect
CMake version : version 3.22.2
Libc version : glibc-2.34
==============================
PyTorch Info
==============================
PyTorch version : 2.8.0+cu128
Is debug build : False
CUDA used to build PyTorch : 12.8
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.9.22 (main, Apr 29 2025, 00:00:00) [GCC 11.5.0 20240719 (Red Hat 11.5.0-5)] (64-bit runtime)
Python platform : Linux-6.1.134-152.225.amzn2023.x86_64-x86_64-with-glibc2.34
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 12.8.93
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA A100-SXM4-40GB
GPU 1: NVIDIA A100-SXM4-40GB
GPU 2: NVIDIA A100-SXM4-40GB
GPU 3: NVIDIA A100-SXM4-40GB
GPU 4: NVIDIA A100-SXM4-40GB
GPU 5: NVIDIA A100-SXM4-40GB
GPU 6: NVIDIA A100-SXM4-40GB
GPU 7: NVIDIA A100-SXM4-40GB
Nvidia driver version : 570.133.20
cuDNN version : Could not collect
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 96
On-line CPU(s) list: 0-95
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz
CPU family: 6
Model: 85
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 2
Stepping: 7
BogoMIPS: 6000.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves ida arat pku ospke
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 1.5 MiB (48 instances)
L1i cache: 1.5 MiB (48 instances)
L2 cache: 48 MiB (48 instances)
L3 cache: 71.5 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-23,48-71
NUMA node1 CPU(s): 24-47,72-95
Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit: KVM: Mitigation: VMX unsupported
Vulnerability L1tf: Mitigation; PTE Inversion
Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Meltdown: Mitigation; PTI
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Vulnerable
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Retpoline
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.0.2
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-ml-py==12.575.51
[pip3] nvidia-nccl-cu12==2.27.3
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] pynvml==12.0.0
[pip3] pyzmq==27.0.0
[pip3] torch==2.8.0
[pip3] torchaudio==2.8.0
[pip3] torchvision==0.23.0
[pip3] transformers==4.56.1
[pip3] triton==3.4.0
[conda] Could not collect
==============================
vLLM Info
==============================
ROCM Version : Could not collect
vLLM Version : 0.10.2
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV12 NV12 NV12 NV12 NV12 NV12 NV12 0-23,48-71 0 N/A
GPU1 NV12 X NV12 NV12 NV12 NV12 NV12 NV12 0-23,48-71 0 N/A
GPU2 NV12 NV12 X NV12 NV12 NV12 NV12 NV12 0-23,48-71 0 N/A
GPU3 NV12 NV12 NV12 X NV12 NV12 NV12 NV12 0-23,48-71 0 N/A
GPU4 NV12 NV12 NV12 NV12 X NV12 NV12 NV12 24-47,72-95 1 N/A
GPU5 NV12 NV12 NV12 NV12 NV12 X NV12 NV12 24-47,72-95 1 N/A
GPU6 NV12 NV12 NV12 NV12 NV12 NV12 X NV12 24-47,72-95 1 N/A
GPU7 NV12 NV12 NV12 NV12 NV12 NV12 NV12 X 24-47,72-95 1 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
==============================
Environment Variables
==============================
LD_LIBRARY_PATH=/opt/amazon/efa/lib64:/opt/amazon/openmpi/lib64:/opt/amazon/ofi-nccl/lib64:/usr/local/cuda/lib:/usr/local/cuda:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/targets/x86_64-linux/lib:/usr/local/lib:/usr/lib:/lib
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
Run the following command to reproduce the error:
python3 benchmarks/kernels/benchmark_lora.py model_bench --models meta-llama/Llama-3-8b --arg-pool-size 32 --batch-sizes 32 --dtype torch.float16 --lora-ranks 16 --num-loras 1 4 --op-types lora_shrink lora_expand --seq-lengths 16 --sort-by-lora-id 1 --cuda-graph-nops 32 Error output:
Benchmarking 32 invocations inside a CUDA Graph
Traceback (most recent call last):
File "/home/ec2-user/vllm/benchmarks/kernels/benchmark_lora.py", line 1065, in <module>
args.func(args)
File "/home/ec2-user/vllm/benchmarks/kernels/benchmark_lora.py", line 918, in run_model_bench
run(args, bench_contexts)
File "/home/ec2-user/vllm/benchmarks/kernels/benchmark_lora.py", line 793, in run
bench_optype(
File "/home/ec2-user/vllm/benchmarks/kernels/benchmark_lora.py", line 642, in bench_optype
op_type.bench_fn()(**kwargs)
File "/home/ec2-user/.local/lib/python3.9/site-packages/torch/_ops.py", line 1243, in __call__
return self._op(*args, **kwargs)
RuntimeError: vllm::lora_shrink() is missing value for argument 'no_lora_flag_cpu'. Declaration: vllm::lora_shrink(Tensor inputs, Tensor[] lora_a_weights, Tensor(a2!) output_tensor, Tensor token_lora_mapping, Tensor token_indices_sorted_by_lora_ids, Tensor num_tokens_per_lora, Tensor lora_token_start_loc, Tensor lora_ids, Tensor no_lora_flag_cpu, float scaling) -> ()
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working