-
-
Notifications
You must be signed in to change notification settings - Fork 11.8k
Description
Your current environment
The output of python collect_env.py
==============================
System Info
==============================
OS : Ubuntu 20.04.6 LTS (x86_64)
GCC version : (Ubuntu 10.5.0-1ubuntu1~20.04) 10.5.0
Clang version : Could not collect
CMake version : version 3.22.2
Libc version : glibc-2.31
==============================
PyTorch Info
==============================
PyTorch version : 2.7.1+cu126
Is debug build : False
CUDA used to build PyTorch : 12.6
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.11.0 | packaged by conda-forge | (main, Jan 14 2023, 12:27:40) [GCC 11.3.0] (64-bit runtime)
Python platform : Linux-5.4.0-169-generic-x86_64-with-glibc2.31
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 12.5.40
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
GPU 4: NVIDIA A100-SXM4-80GB
GPU 5: NVIDIA A100-SXM4-80GB
GPU 6: NVIDIA A100-SXM4-80GB
GPU 7: NVIDIA A100-SXM4-80GB
Nvidia driver version : 555.42.02
cuDNN version : Could not collect
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 43 bits physical, 48 bits virtual
CPU(s): 256
On-line CPU(s) list: 0-255
Thread(s) per core: 2
Core(s) per socket: 64
Socket(s): 2
NUMA node(s): 2
Vendor ID: AuthenticAMD
CPU family: 23
Model: 49
Model name: AMD EPYC 7742 64-Core Processor
Stepping: 0
Frequency boost: enabled
CPU MHz: 1511.010
CPU max MHz: 2250.0000
CPU min MHz: 1500.0000
BogoMIPS: 4499.79
Virtualization: AMD-V
L1d cache: 4 MiB
L1i cache: 4 MiB
L2 cache: 64 MiB
L3 cache: 512 MiB
NUMA node0 CPU(s): 0-63,128-191
NUMA node1 CPU(s): 64-127,192-255
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Vulnerable
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip rdpid overflow_recov succor smca sme sev sev_es
==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pyzmq==27.0.1
[pip3] torch==2.7.1
[pip3] torchaudio==2.7.1
[pip3] torchvision==0.22.1
[pip3] transformers==4.55.2
[pip3] transformers-v4.55.0-GLM-4.5V-preview==4.56.0.dev0
[pip3] triton==3.3.1
[conda] numpy 2.2.6 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi
[conda] nvidia-cufile-cu12 1.11.1.6 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.26.2 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi
[conda] pyzmq 27.0.1 pypi_0 pypi
[conda] torch 2.7.1 pypi_0 pypi
[conda] torchaudio 2.7.1 pypi_0 pypi
[conda] torchvision 0.22.1 pypi_0 pypi
[conda] transformers 4.55.2 pypi_0 pypi
[conda] transformers-v4-55-0-glm-4-5v-preview 4.56.0.dev0 pypi_0 pypi
[conda] triton 3.3.1 pypi_0 pypi
==============================
vLLM Info
==============================
ROCM Version : Could not collect
Neuron SDK Version : N/A
vLLM Version : 0.10.1.dev600+g6807af8f (git sha: 6807af8f)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV12 NV12 NV12 NV12 NV12 NV12 NV12 0-63,128-191 0 N/A
GPU1 NV12 X NV12 NV12 NV12 NV12 NV12 NV12 0-63,128-191 0 N/A
GPU2 NV12 NV12 X NV12 NV12 NV12 NV12 NV12 0-63,128-191 0 N/A
GPU3 NV12 NV12 NV12 X NV12 NV12 NV12 NV12 0-63,128-191 0 N/A
GPU4 NV12 NV12 NV12 NV12 X NV12 NV12 NV12 64-127,192-255 1 N/A
GPU5 NV12 NV12 NV12 NV12 NV12 X NV12 NV12 64-127,192-255 1 N/A
GPU6 NV12 NV12 NV12 NV12 NV12 NV12 X NV12 64-127,192-255 1 N/A
GPU7 NV12 NV12 NV12 NV12 NV12 NV12 NV12 X 64-127,192-255 1 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
==============================
Environment Variables
==============================
LD_LIBRARY_PATH=/usr/local/cuda/lib64:
CUDA_HOME=/usr/local/cuda
CUDA_HOME=/usr/local/cuda
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
when loading the auto_round format quantized model with quantized lm_head. It shows error: ValueError: There is no module or parameter named 'lm_head.qweight' is Glm4MoeForCaulsalLM.
Then main problem is that the argument "prefix" in vllm/model_executor/layers/quantization/auto_round.py got empty for some layers. I add a logger to print the prefix and got the follow logs:
�[1;36m(VllmWorker TP2 pid=2079254)�[0;0m DEBUG 08-14 23:24:25 [auto_round.py:381] prefix=model.layers.91.self_attn.o_proj
�[1;36m(VllmWorker TP2 pid=2079254)�[0;0m DEBUG 08-14 23:24:25 [auto_round.py:280] [model.layers.91.self_attn.o_proj] Type: RowParallelLinear, Bits: 8, Group Size: 128, Sym: True
�[1;36m(VllmWorker TP2 pid=2079254)�[0;0m DEBUG 08-14 23:24:25 [auto_round.py:381] prefix=model.layers.91.self_attn.attn
�[1;36m(VllmWorker TP2 pid=2079254)�[0;0m DEBUG 08-14 23:24:25 [auto_round.py:280] [model.layers.91.self_attn.attn] Type: Attention, Bits: 4, Group Size: 128, Sym: True
�[1;36m(VllmWorker TP2 pid=2079254)�[0;0m DEBUG 08-14 23:24:25 [auto_round.py:381] prefix=model.layers.91.mlp.experts
�[1;36m(VllmWorker TP2 pid=2079254)�[0;0m DEBUG 08-14 23:24:25 [auto_round.py:280] [model.layers.91.mlp.experts] Type: FusedMoE, Bits: 4, Group Size: 128, Sym: True
�[1;36m(VllmWorker TP2 pid=2079254)�[0;0m DEBUG 08-14 23:24:25 [auto_round.py:381] prefix=model.layers.91.mlp.shared_experts.gate_up_proj
�[1;36m(VllmWorker TP2 pid=2079254)�[0;0m DEBUG 08-14 23:24:25 [auto_round.py:280] [model.layers.91.mlp.shared_experts.gate_up_proj] Type: MergedColumnParallelLinear, Bits: 4, Group Size: 128, Sym: True
�[1;36m(VllmWorker TP2 pid=2079254)�[0;0m DEBUG 08-14 23:24:25 [auto_round.py:381] prefix=model.layers.91.mlp.shared_experts.down_proj
�[1;36m(VllmWorker TP2 pid=2079254)�[0;0m DEBUG 08-14 23:24:25 [auto_round.py:280] [model.layers.91.mlp.shared_experts.down_proj] Type: RowParallelLinear, Bits: 4, Group Size: 128, Sym: True
�[1;36m(VllmWorker TP0 pid=2079252)�[0;0m DEBUG 08-14 23:24:25 [auto_round.py:381] prefix=
�[1;36m(VllmWorker TP2 pid=2079254)�[0;0m DEBUG 08-14 23:24:25 [backends.py:39] Using InductorAdaptor
�[1;36m(VllmWorker TP0 pid=2079252)�[0;0m DEBUG 08-14 23:24:25 [init.py:3816] enabled custom ops: Counter()
�[1;36m(VllmWorker TP0 pid=2079252)�[0;0m DEBUG 08-14 23:24:25 [init.py:3818] disabled custom ops: Counter({'rms_norm': 369, 'silu_and_mul': 92, 'rotary_embedding': 1})
�[1;36m(VllmWorker TP0 pid=2079252)�[0;0m DEBUG 08-14 23:24:25 [base_loader.py:47] Loading weights on cuda ...
�[1;36m(VllmWorker TP2 pid=2079254)�[0;0m DEBUG 08-14 23:24:25 [auto_round.py:381] prefix=
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.