- 
          
- 
                Notifications
    You must be signed in to change notification settings 
- Fork 10.9k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of python collect_env.py
Collecting environment information...
==============================
        System Info
==============================
OS                           : Ubuntu 22.04.5 LTS (x86_64)
GCC version                  : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version                : 14.0.0-1ubuntu1.1
CMake version                : version 4.0.3
Libc version                 : glibc-2.35
==============================
       PyTorch Info
==============================
PyTorch version              : 2.7.1+cu128
Is debug build               : False
CUDA used to build PyTorch   : 12.8
ROCM used to build PyTorch   : N/A
==============================
      Python Environment
==============================
Python version               : 3.12.11 (main, Jun  4 2025, 08:56:18) [GCC 11.4.0] (64-bit runtime)
Python platform              : Linux-6.6.93+-x86_64-with-glibc2.35
==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 12.9.86
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : 
GPU 0: NVIDIA B200
GPU 1: NVIDIA B200
GPU 2: NVIDIA B200
GPU 3: NVIDIA B200
GPU 4: NVIDIA B200
GPU 5: NVIDIA B200
GPU 6: NVIDIA B200
GPU 7: NVIDIA B200
Nvidia driver version        : 575.57.08
cuDNN version                : Could not collect
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True
==============================
          CPU Info
==============================
Architecture:                            x86_64
CPU op-mode(s):                          32-bit, 64-bit
Address sizes:                           52 bits physical, 57 bits virtual
Byte Order:                              Little Endian
CPU(s):                                  224
On-line CPU(s) list:                     0-223
Vendor ID:                               GenuineIntel
Model name:                              INTEL(R) XEON(R) PLATINUM 8581C CPU @ 2.10GHz
CPU family:                              6
Model:                                   207
Thread(s) per core:                      2
Core(s) per socket:                      56
Socket(s):                               2
Stepping:                                2
BogoMIPS:                                4200.00
Flags:                                   fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx_vnni avx512_bf16 wbnoinvd arat avx512vbmi umip avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid cldemote movdiri movdir64b fsrm md_clear serialize tsxldtrk amx_bf16 avx512_fp16 amx_tile amx_int8 arch_capabilities
Hypervisor vendor:                       KVM
Virtualization type:                     full
L1d cache:                               5.3 MiB (112 instances)
L1i cache:                               3.5 MiB (112 instances)
L2 cache:                                224 MiB (112 instances)
L3 cache:                                520 MiB (2 instances)
NUMA node(s):                            2
NUMA node0 CPU(s):                       0-55,112-167
NUMA node1 CPU(s):                       56-111,168-223
Vulnerability Gather data sampling:      Not affected
Vulnerability Indirect target selection: Mitigation; Aligned branch/return thunks
Vulnerability Itlb multihit:             Not affected
Vulnerability L1tf:                      Not affected
Vulnerability Mds:                       Not affected
Vulnerability Meltdown:                  Not affected
Vulnerability Mmio stale data:           Not affected
Vulnerability Reg file data sampling:    Not affected
Vulnerability Retbleed:                  Not affected
Vulnerability Spec rstack overflow:      Not affected
Vulnerability Spec store bypass:         Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:                Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:                Mitigation; Enhanced / Automatic IBRS; IBPB disabled; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds:                     Not affected
Vulnerability Tsx async abort:           Not affected
==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.3.14
[pip3] nvidia-cuda-cupti-cu12==12.8.57
[pip3] nvidia-cuda-nvrtc-cu12==12.8.61
[pip3] nvidia-cuda-runtime-cu12==12.8.57
[pip3] nvidia-cudnn-cu12==9.7.1.26
[pip3] nvidia-cudnn-frontend==1.13.0
[pip3] nvidia-cufft-cu12==11.3.3.41
[pip3] nvidia-cufile-cu12==1.13.0.11
[pip3] nvidia-curand-cu12==10.3.9.55
[pip3] nvidia-cusolver-cu12==11.7.2.55
[pip3] nvidia-cusparse-cu12==12.5.7.53
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-ml-py==12.575.51
[pip3] nvidia-nccl-cu12==2.26.2.post1
[pip3] nvidia-nvjitlink-cu12==12.8.61
[pip3] nvidia-nvshmem-cu12==3.3.20
[pip3] nvidia-nvtx-cu12==12.8.55
[pip3] pynvml==12.0.0
[pip3] pyzmq==27.0.1
[pip3] torch==2.7.1+cu128
[pip3] torchaudio==2.7.1+cu128
[pip3] torchvision==0.22.1+cu128
[pip3] transformers==4.55.0
[pip3] triton==3.3.1
[conda] Could not collect
==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
Neuron SDK Version           : N/A
vLLM Version                 : 0.1.dev1+gb4b9813 (git sha: b4b9813)
vLLM Build Flags:
  CUDA Archs: 9.0a 10.0; ROCm: Disabled; Neuron: Disabled
GPU Topology:
  	GPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	NIC0	NIC1	NIC2	NIC3	NIC4	NIC5	NIC6	NIC7	CPU Affinity	NUMA Affinity	GPU NUMA ID
GPU0	 X 	NV18	NV18	NV18	NV18	NV18	NV18	NV18	PIX	PIX	NODE	NODE	SYS	SYS	SYS	SYS	0-55,112-167	0		N/A
GPU1	NV18	 X 	NV18	NV18	NV18	NV18	NV18	NV18	PIX	PIX	NODE	NODE	SYS	SYS	SYS	SYS	0-55,112-167	0		N/A
GPU2	NV18	NV18	 X 	NV18	NV18	NV18	NV18	NV18	NODE	NODE	PIX	PIX	SYS	SYS	SYS	SYS	0-55,112-167	0		N/A
GPU3	NV18	NV18	NV18	 X 	NV18	NV18	NV18	NV18	NODE	NODE	PIX	PIX	SYS	SYS	SYS	SYS	0-55,112-167	0		N/A
GPU4	NV18	NV18	NV18	NV18	 X 	NV18	NV18	NV18	SYS	SYS	SYS	SYS	PIX	PIX	NODE	NODE	56-111,168-223	1		N/A
GPU5	NV18	NV18	NV18	NV18	NV18	 X 	NV18	NV18	SYS	SYS	SYS	SYS	PIX	PIX	NODE	NODE	56-111,168-223	1		N/A
GPU6	NV18	NV18	NV18	NV18	NV18	NV18	 X 	NV18	SYS	SYS	SYS	SYS	NODE	NODE	PIX	PIX	56-111,168-223	1		N/A
GPU7	NV18	NV18	NV18	NV18	NV18	NV18	NV18	 X 	SYS	SYS	SYS	SYS	NODE	NODE	PIX	PIX	56-111,168-223	1		N/A
NIC0	PIX	PIX	NODE	NODE	SYS	SYS	SYS	SYS	 X 	PIX	NODE	NODE	SYS	SYS	SYS	SYS				
NIC1	PIX	PIX	NODE	NODE	SYS	SYS	SYS	SYS	PIX	 X 	NODE	NODE	SYS	SYS	SYS	SYS				
NIC2	NODE	NODE	PIX	PIX	SYS	SYS	SYS	SYS	NODE	NODE	 X 	PIX	SYS	SYS	SYS	SYS				
NIC3	NODE	NODE	PIX	PIX	SYS	SYS	SYS	SYS	NODE	NODE	PIX	 X 	SYS	SYS	SYS	SYS				
NIC4	SYS	SYS	SYS	SYS	PIX	PIX	NODE	NODE	SYS	SYS	SYS	SYS	 X 	PIX	NODE	NODE				
NIC5	SYS	SYS	SYS	SYS	PIX	PIX	NODE	NODE	SYS	SYS	SYS	SYS	PIX	 X 	NODE	NODE				
NIC6	SYS	SYS	SYS	SYS	NODE	NODE	PIX	PIX	SYS	SYS	SYS	SYS	NODE	NODE	 X 	PIX				
NIC7	SYS	SYS	SYS	SYS	NODE	NODE	PIX	PIX	SYS	SYS	SYS	SYS	NODE	NODE	PIX	 X 				
Legend:
  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks
NIC Legend:
  NIC0: mlx5_0
  NIC1: mlx5_1
  NIC2: mlx5_2
  NIC3: mlx5_3
  NIC4: mlx5_4
  NIC5: mlx5_5
  NIC6: mlx5_6
  NIC7: mlx5_7
==============================
     Environment Variables
==============================
CUDA_HOME=/usr/local/cuda/
CUDA_HOME=/usr/local/cuda/
CUDA_VERSION=12.9.1
LD_LIBRARY_PATH=/opt/nvshmem-3.3.9/lib:/usr/local/nixl/lib/x86_64-linux-gnu:/opt/ucx/lib:/usr/local/lib:/usr/local/gib/lib64:/usr/local/nvidia/lib64:/usr/local/cuda/lib64
MAX_JOBS=128
NCCL_CROSS_NIC=0
NCCL_DEBUG=INFO
NCCL_IB_ADAPTIVE_ROUTING=1
NCCL_IB_FIFO_TC=84
NCCL_IB_GID_INDEX=3
NCCL_IB_QPS_PER_CONNECTION=4
NCCL_IB_TC=52
NCCL_NET_GDR_LEVEL=PIX
NCCL_NET_PLUGIN=/usr/local/gib/lib64/libnccl-net_internal.so
NCCL_NVLS_CHUNKSIZE=524288
NCCL_P2P_NET_CHUNKSIZE=131072
NCCL_P2P_NVL_CHUNKSIZE=524288
NCCL_P2P_PCI_CHUNKSIZE=131072
NCCL_TUNER_CONFIG_PATH=/usr/local/gib/configs/tuner_config_a4.txtpb
NCCL_VERSION=2.27.3-1
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NVIDIA_GDRCOPY=disabled
NVIDIA_PRODUCT_NAME=CUDA
NVIDIA_REQUIRE_CUDA=cuda>=12.9 brand=unknown,driver>=535,driver<536 brand=grid,driver>=535,driver<536 brand=tesla,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=vapps,driver>=535,driver<536 brand=vpc,driver>=535,driver<536 brand=vcs,driver>=535,driver<536 brand=vws,driver>=535,driver<536 brand=cloudgaming,driver>=535,driver<536 brand=unknown,driver>=550,driver<551 brand=grid,driver>=550,driver<551 brand=tesla,driver>=550,driver<551 brand=nvidia,driver>=550,driver<551 brand=quadro,driver>=550,driver<551 brand=quadrortx,driver>=550,driver<551 brand=nvidiartx,driver>=550,driver<551 brand=vapps,driver>=550,driver<551 brand=vpc,driver>=550,driver<551 brand=vcs,driver>=550,driver<551 brand=vws,driver>=550,driver<551 brand=cloudgaming,driver>=550,driver<551 brand=unknown,driver>=560,driver<561 brand=grid,driver>=560,driver<561 brand=tesla,driver>=560,driver<561 brand=nvidia,driver>=560,driver<561 brand=quadro,driver>=560,driver<561 brand=quadrortx,driver>=560,driver<561 brand=nvidiartx,driver>=560,driver<561 brand=vapps,driver>=560,driver<561 brand=vpc,driver>=560,driver<561 brand=vcs,driver>=560,driver<561 brand=vws,driver>=560,driver<561 brand=cloudgaming,driver>=560,driver<561 brand=unknown,driver>=565,driver<566 brand=grid,driver>=565,driver<566 brand=tesla,driver>=565,driver<566 brand=nvidia,driver>=565,driver<566 brand=quadro,driver>=565,driver<566 brand=quadrortx,driver>=565,driver<566 brand=nvidiartx,driver>=565,driver<566 brand=vapps,driver>=565,driver<566 brand=vpc,driver>=565,driver<566 brand=vcs,driver>=565,driver<566 brand=vws,driver>=565,driver<566 brand=cloudgaming,driver>=565,driver<566 brand=unknown,driver>=570,driver<571 brand=grid,driver>=570,driver<571 brand=tesla,driver>=570,driver<571 brand=nvidia,driver>=570,driver<571 brand=quadro,driver>=570,driver<571 brand=quadrortx,driver>=570,driver<571 brand=nvidiartx,driver>=570,driver<571 brand=vapps,driver>=570,driver<571 brand=vpc,driver>=570,driver<571 brand=vcs,driver>=570,driver<571 brand=vws,driver>=570,driver<571 brand=cloudgaming,driver>=570,driver<571
NVIDIA_VISIBLE_DEVICES=all
TORCH_CUDA_ARCH_LIST=9.0a 10.0
VLLM_ALL2ALL_BACKEND=deepep_low_latency
VLLM_LOGGING_LEVEL=DEBUG
VLLM_NIXL_SIDE_CHANNEL_HOST=10.4.2.43
VLLM_NIXL_SIDE_CHANNEL_PORT=6555
VLLM_RANDOMIZE_DP_DUMMY_INPUTS=1
VLLM_TORCH_PROFILER_DIR=/code/traces
VLLM_USE_DEEP_GEMM=1
VLLM_USE_TRTLLM_DECODE_ATTENTION=1
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
Starting vllm on B200 against HEAD with:
$ vllm serve Qwen/Qwen3-30B-A3B-FP8 --port 8000 --enforce-eager --disable-log-requests --enable-expert-parallel --tensor-parallel-size 1 --data-parallel-size 2 --trust-remote-code
results in the following crash when attempting to serve a request.
(EngineCore_0 pid=6088) Traceback (most recent call last):
(EngineCore_0 pid=6088)   File "/usr/lib/python3.12/multiprocessing/process.py", line 314, in _bootstrap
(EngineCore_0 pid=6088)     self.run()
(EngineCore_0 pid=6088)   File "/usr/lib/python3.12/multiprocessing/process.py", line 108, in run
(EngineCore_0 pid=6088)     self._target(*self._args, **self._kwargs)
(EngineCore_0 pid=6088)   File "/app/vllm/vllm/v1/engine/core.py", line 687, in run_engine_core
(EngineCore_0 pid=6088)     raise e
(EngineCore_0 pid=6088)   File "/app/vllm/vllm/v1/engine/core.py", line 676, in run_engine_core
(EngineCore_0 pid=6088)     engine_core.run_busy_loop()
(EngineCore_0 pid=6088)   File "/app/vllm/vllm/v1/engine/core.py", line 1017, in run_busy_loop
(EngineCore_0 pid=6088)     executed = self._process_engine_step()
(EngineCore_0 pid=6088)                ^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_0 pid=6088)   File "/app/vllm/vllm/v1/engine/core.py", line 728, in _process_engine_step
(EngineCore_0 pid=6088)     outputs, model_executed = self.step_fn()
(EngineCore_0 pid=6088)                               ^^^^^^^^^^^^^^
(EngineCore_0 pid=6088)   File "/app/vllm/vllm/v1/engine/core.py", line 273, in step
(EngineCore_0 pid=6088)     model_output = self.execute_model_with_error_logging(
(EngineCore_0 pid=6088)                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_0 pid=6088)   File "/app/vllm/vllm/v1/engine/core.py", line 259, in execute_model_with_error_logging
(EngineCore_0 pid=6088)     raise err
(EngineCore_0 pid=6088)   File "/app/vllm/vllm/v1/engine/core.py", line 250, in execute_model_with_error_logging
(EngineCore_0 pid=6088)     return model_fn(scheduler_output)
(EngineCore_0 pid=6088)            ^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_0 pid=6088)   File "/app/vllm/vllm/v1/executor/abstract.py", line 87, in execute_model
(EngineCore_0 pid=6088)     output = self.collective_rpc("execute_model",
(EngineCore_0 pid=6088)              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_0 pid=6088)   File "/app/vllm/vllm/executor/uniproc_executor.py", line 58, in collective_rpc
(EngineCore_0 pid=6088)     answer = run_method(self.driver_worker, method, args, kwargs)
(EngineCore_0 pid=6088)              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_0 pid=6088)   File "/app/vllm/vllm/utils/__init__.py", line 2948, in run_method
(EngineCore_0 pid=6088)     return func(*args, **kwargs)
(EngineCore_0 pid=6088)            ^^^^^^^^^^^^^^^^^^^^^
(EngineCore_0 pid=6088)   File "/app/venv/lib/python3.12/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
(EngineCore_0 pid=6088)     return func(*args, **kwargs)
(EngineCore_0 pid=6088)            ^^^^^^^^^^^^^^^^^^^^^
(EngineCore_0 pid=6088)   File "/app/vllm/vllm/v1/worker/gpu_worker.py", line 362, in execute_model
(EngineCore_0 pid=6088)     output = self.model_runner.execute_model(scheduler_output,
(EngineCore_0 pid=6088)              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_0 pid=6088)   File "/app/venv/lib/python3.12/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
(EngineCore_0 pid=6088)     return func(*args, **kwargs)
(EngineCore_0 pid=6088)            ^^^^^^^^^^^^^^^^^^^^^
(EngineCore_0 pid=6088)   File "/app/vllm/vllm/v1/worker/gpu_model_runner.py", line 1484, in execute_model
(EngineCore_0 pid=6088)     self._prepare_inputs(scheduler_output))
(EngineCore_0 pid=6088)     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_0 pid=6088)   File "/app/vllm/vllm/v1/worker/gpu_model_runner.py", line 851, in _prepare_inputs
(EngineCore_0 pid=6088)     attn_metadata_i = (builder.build(
(EngineCore_0 pid=6088)                        ^^^^^^^^^^^^^^
(EngineCore_0 pid=6088)   File "/app/vllm/vllm/v1/attention/backends/flashinfer.py", line 529, in build
(EngineCore_0 pid=6088)     and use_trtllm_attention(
(EngineCore_0 pid=6088)         ^^^^^^^^^^^^^^^^^^^^^
(EngineCore_0 pid=6088)   File "/app/vllm/vllm/utils/flashinfer.py", line 165, in use_trtllm_attention
(EngineCore_0 pid=6088)     env_value = envs.VLLM_USE_TRTLLM_ATTENTION
(EngineCore_0 pid=6088)                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_0 pid=6088)   File "/app/vllm/vllm/envs.py", line 1089, in __getattr__
(EngineCore_0 pid=6088)     raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
(EngineCore_0 pid=6088) AttributeError: module 'vllm.envs' has no attribute 'VLLM_USE_TRTLLM_ATTENTION'. Did you mean: 'VLLM_USE_TRTLLM_DECODE_ATTENTION'?
Looking at the source, #22095 did not add it to vllm.envs.
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
ruudniew
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working