Open
Description
Your current environment
The output of python collect_env.py
==============================
System Info
==============================
OS : Ubuntu 22.04.3 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version : Could not collect
CMake version : Could not collect
Libc version : glibc-2.35
==============================
PyTorch Info
==============================
PyTorch version : 2.7.0+cu126
Is debug build : False
CUDA used to build PyTorch : 12.6
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.11.0rc1 (main, Aug 12 2022, 10:02:14) [GCC 11.2.0] (64-bit runtime)
Python platform : Linux-5.15.0-1071-azure-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 11.8.89
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
Nvidia driver version : 550.90.07
cuDNN version : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.6
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 96
On-line CPU(s) list: 0-95
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7V12 64-Core Processor
CPU family: 23
Model: 49
Thread(s) per core: 1
Core(s) per socket: 48
Socket(s): 2
Stepping: 0
BogoMIPS: 4890.87
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 3 MiB (96 instances)
L1i cache: 3 MiB (96 instances)
L2 cache: 48 MiB (96 instances)
L3 cache: 384 MiB (24 instances)
NUMA node(s): 4
NUMA node0 CPU(s): 0-23
NUMA node1 CPU(s): 24-47
NUMA node2 CPU(s): 48-71
NUMA node3 CPU(s): 72-95
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled
Vulnerability Spec rstack overflow: Mitigation; safe RET, no microcode
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pyzmq==26.4.0
[pip3] torch==2.7.0
[pip3] torchaudio==2.7.0
[pip3] torchvision==0.22.0
[pip3] transformers==4.51.3
[pip3] triton==3.3.0
[conda] No relevant packages
==============================
vLLM Info
==============================
ROCM Version : Could not collect
Neuron SDK Version : N/A
vLLM Version : 0.9.1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV12 NODE SYS SYS NODE NODE SYS SYS SYS SYS 0-23 0 N/A
GPU1 NV12 X SYS SYS SYS SYS SYS NODE NODE SYS SYS 72-95 3 N/A
NIC0 NODE SYS X SYS SYS NODE NODE SYS SYS SYS SYS
NIC1 SYS SYS SYS X NODE SYS SYS SYS SYS SYS SYS
NIC2 SYS SYS SYS NODE X SYS SYS SYS SYS SYS SYS
NIC3 NODE SYS NODE SYS SYS X NODE SYS SYS SYS SYS
NIC4 NODE SYS NODE SYS SYS NODE X SYS SYS SYS SYS
NIC5 SYS NODE SYS SYS SYS SYS SYS X NODE SYS SYS
NIC6 SYS NODE SYS SYS SYS SYS SYS NODE X SYS SYS
NIC7 SYS SYS SYS SYS SYS SYS SYS SYS SYS X NODE
NIC8 SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_an0
NIC1: mlx5_ib0
NIC2: mlx5_ib1
NIC3: mlx5_ib2
NIC4: mlx5_ib3
NIC5: mlx5_ib4
NIC6: mlx5_ib5
NIC7: mlx5_ib6
NIC8: mlx5_ib7
==============================
Environment Variables
==============================
NVIDIA_VISIBLE_DEVICES=GPU-d5fa1edc-cdb0-2e2e-a38f-533238b5a62b,GPU-d879a2ab-52dd-73de-8dac-9545763a254e
NVIDIA_REQUIRE_CUDA=cuda>=11.8 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471
NCCL_IB_PCI_RELAXED_ORDERING=1
TORCH_DISTRIBUTED_INIT_STORE_STORAGE_ENDPOINT=MustSpecifyViaApplicationParameters
NCCL_VERSION=2.15.5-1
NCCL_SOCKET_IFNAME=eth0
NCCL_NET_GDR_LEVEL=5
NCCL_DEBUG_SUBSYS=INIT,GRAPH
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NCCL_DEBUG=INFO
NCCL_IB_HCA=
NVIDIA_PRODUCT_NAME=CUDA
TORCH_DISTRIBUTED_INIT_STORE_STORAGE_NAME=MustSpecifyViaApplicationParameters
CUDA_DEVICE_ORDER=PCI_BUS_ID
CUDA_VERSION=11.8.0
TORCH_DISTRIBUTED_INIT_STORE_MOUNT_PERMISSIONS=MustSpecifyViaApplicationParameters
TORCH_DISTRIBUTED_INIT_STORE_MOUNT_PATH=MustSpecifyViaApplicationParameters
LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64
TORCH_DISTRIBUTED_INIT_STORE_STORAGE_KIND=None
NCCL_TOPO_FILE=/opt/microsoft/ndv4-topo.xml
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
Engine core initialization failed.
Code example:
from vllm import LLM
llm = LLM(model="facebook/opt-125m")
Error:
DEBUG 06-26 08:13:27 [__init__.py:31] No plugins for group vllm.platform_plugins found.
DEBUG 06-26 08:13:27 [__init__.py:35] Checking if TPU platform is available.
DEBUG 06-26 08:13:27 [__init__.py:45] TPU platform is not available because: No module named 'libtpu'
DEBUG 06-26 08:13:27 [__init__.py:52] Checking if CUDA platform is available.
DEBUG 06-26 08:13:27 [__init__.py:72] Confirmed CUDA platform is available.
DEBUG 06-26 08:13:27 [__init__.py:100] Checking if ROCm platform is available.
DEBUG 06-26 08:13:27 [__init__.py:114] ROCm platform is not available because: No module named 'amdsmi'
DEBUG 06-26 08:13:27 [__init__.py:121] Checking if HPU platform is available.
DEBUG 06-26 08:13:27 [__init__.py:128] HPU platform is not available because habana_frameworks is not found.
DEBUG 06-26 08:13:27 [__init__.py:138] Checking if XPU platform is available.
DEBUG 06-26 08:13:27 [__init__.py:148] XPU platform is not available because: No module named 'intel_extension_for_pytorch'
DEBUG 06-26 08:13:27 [__init__.py:155] Checking if CPU platform is available.
DEBUG 06-26 08:13:27 [__init__.py:177] Checking if Neuron platform is available.
DEBUG 06-26 08:13:27 [__init__.py:52] Checking if CUDA platform is available.
DEBUG 06-26 08:13:27 [__init__.py:72] Confirmed CUDA platform is available.
INFO 06-26 08:13:27 [__init__.py:244] Automatically detected platform cuda.
DEBUG 06-26 08:13:30 [__init__.py:39] Available plugins for group vllm.general_plugins:
DEBUG 06-26 08:13:30 [__init__.py:41] - lora_filesystem_resolver -> vllm.plugins.lora_resolvers.filesystem_resolver:register_filesystem_resolver
DEBUG 06-26 08:13:30 [__init__.py:44] All plugins in this group will be loaded. Set `VLLM_PLUGINS` to control which plugins to load.
INFO 06-26 08:13:49 [config.py:823] This model supports multiple tasks: {'embed', 'classify', 'reward', 'score', 'generate'}. Defaulting to 'generate'.
DEBUG 06-26 08:13:50 [arg_utils.py:1600] Setting max_num_batched_tokens to 8192 for LLM_CLASS usage context.
DEBUG 06-26 08:13:50 [arg_utils.py:1607] Setting max_num_seqs to 256 for LLM_CLASS usage context.
INFO 06-26 08:13:50 [config.py:2195] Chunked prefill is enabled with max_num_batched_tokens=8192.
INFO 06-26 08:13:55 [core.py:455] Waiting for init message from front-end.
DEBUG 06-26 08:13:55 [utils.py:547] HELLO from local core engine process 0.
DEBUG 06-26 08:13:55 [core.py:463] Received init message: EngineHandshakeMetadata(addresses=EngineZmqAddresses(inputs=['ipc:///tmp/0b5a965a-683a-4d43-a75f-1d8a0e790794'], outputs=['ipc:///tmp/68f79e54-444c-4326-add5-b20daf4463ce'], coordinator_input=None, coordinator_output=None), parallel_config={'data_parallel_master_ip': '127.0.0.1', 'data_parallel_master_port': 0, 'data_parallel_size': 1})
INFO 06-26 08:13:55 [core.py:70] Initializing a V1 LLM engine (v0.9.1) with config: model='facebook/opt-125m', speculative_config=None, tokenizer='facebook/opt-125m', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config={}, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=2048, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(backend='auto', disable_fallback=False, disable_any_whitespace=False, disable_additional_properties=False, reasoning_backend=''), observability_config=ObservabilityConfig(show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None), seed=0, served_model_name=facebook/opt-125m, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=True, pooler_config=None, compilation_config={"level":3,"debug_dump_path":"","cache_dir":"","backend":"","custom_ops":["none"],"splitting_ops":["vllm.unified_attention","vllm.unified_attention_with_output"],"use_inductor":true,"compile_sizes":[],"inductor_compile_config":{"enable_auto_functionalized_v2":false},"inductor_passes":{},"use_cudagraph":true,"cudagraph_num_of_warmups":1,"cudagraph_capture_sizes":[512,504,496,488,480,472,464,456,448,440,432,424,416,408,400,392,384,376,368,360,352,344,336,328,320,312,304,296,288,280,272,264,256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"cudagraph_copy_inputs":false,"full_cuda_graph":false,"max_capture_size":512,"local_cache_dir":null}
DEBUG 06-26 08:13:55 [decorators.py:110] Inferred dynamic dimensions for forward method of <class 'vllm.model_executor.models.llama.LlamaModel'>: ['input_ids', 'positions', 'intermediate_tensors', 'inputs_embeds']
DEBUG 06-26 08:13:55 [decorators.py:110] Inferred dynamic dimensions for forward method of <class 'vllm.model_executor.models.llama_eagle3.LlamaModel'>: ['input_ids', 'positions', 'hidden_states']
WARNING 06-26 08:13:56 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x7f93add2e450>
DEBUG 06-26 08:13:56 [config.py:4677] enabled custom ops: Counter()
DEBUG 06-26 08:13:56 [config.py:4679] disabled custom ops: Counter()
DEBUG 06-26 08:13:57 [parallel_state.py:918] world_size=1 rank=0 local_rank=0 distributed_init_method=tcp://100.64.72.58:48903 backend=nccl
INFO 06-26 08:13:57 [parallel_state.py:1065] rank 0 in world size 1 is assigned as DP rank 0, PP rank 0, TP rank 0, EP rank 0
WARNING 06-26 08:13:57 [topk_topp_sampler.py:59] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer.
DEBUG 06-26 08:13:57 [decorators.py:110] Inferred dynamic dimensions for forward method of <class 'vllm.model_executor.models.opt.OPTModel'>: ['input_ids', 'positions', 'intermediate_tensors', 'inputs_embeds']
DEBUG 06-26 08:13:57 [config.py:4677] enabled custom ops: Counter()
DEBUG 06-26 08:13:57 [config.py:4679] disabled custom ops: Counter()
INFO 06-26 08:13:57 [gpu_model_runner.py:1595] Starting to load model facebook/opt-125m...
INFO 06-26 08:13:57 [gpu_model_runner.py:1600] Loading model from scratch...
INFO 06-26 08:13:57 [cuda.py:252] Using Flash Attention backend on V1 engine.
DEBUG 06-26 08:13:57 [backends.py:38] Using InductorAdaptor
DEBUG 06-26 08:13:58 [config.py:4677] enabled custom ops: Counter()
DEBUG 06-26 08:13:58 [config.py:4679] disabled custom ops: Counter()
INFO 06-26 08:13:59 [weight_utils.py:292] Using model weights format ['*.bin']
Loading pt checkpoint shards: 0% Completed | 0/1 [00:00<?, ?it/s]
Loading pt checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 6.03it/s]
Loading pt checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 6.03it/s]
INFO 06-26 08:13:59 [default_loader.py:272] Loading weights took 0.17 seconds
INFO 06-26 08:14:00 [gpu_model_runner.py:1624] Model loading took 0.2389 GiB and 1.752694 seconds
DEBUG 06-26 08:14:00 [decorators.py:204] Start compiling function <code object forward at 0x7f952dda2b50, file "/home/aiscuser/.local/lib/python3.11/site-packages/vllm/model_executor/models/opt.py", line 305>
DEBUG 06-26 08:14:01 [backends.py:412] Traced files (to be considered for compilation cache):
DEBUG 06-26 08:14:01 [backends.py:412] /home/aiscuser/.local/lib/python3.11/site-packages/torch/_dynamo/polyfills/__init__.py
DEBUG 06-26 08:14:01 [backends.py:412] /home/aiscuser/.local/lib/python3.11/site-packages/torch/nn/modules/activation.py
DEBUG 06-26 08:14:01 [backends.py:412] /home/aiscuser/.local/lib/python3.11/site-packages/torch/nn/modules/container.py
DEBUG 06-26 08:14:01 [backends.py:412] /home/aiscuser/.local/lib/python3.11/site-packages/torch/nn/modules/module.py
DEBUG 06-26 08:14:01 [backends.py:412] /home/aiscuser/.local/lib/python3.11/site-packages/torch/nn/modules/normalization.py
DEBUG 06-26 08:14:01 [backends.py:412] /home/aiscuser/.local/lib/python3.11/site-packages/torch/nn/modules/sparse.py
DEBUG 06-26 08:14:01 [backends.py:412] /home/aiscuser/.local/lib/python3.11/site-packages/vllm/attention/layer.py
DEBUG 06-26 08:14:01 [backends.py:412] /home/aiscuser/.local/lib/python3.11/site-packages/vllm/distributed/communication_op.py
DEBUG 06-26 08:14:01 [backends.py:412] /home/aiscuser/.local/lib/python3.11/site-packages/vllm/distributed/parallel_state.py
DEBUG 06-26 08:14:01 [backends.py:412] /home/aiscuser/.local/lib/python3.11/site-packages/vllm/model_executor/layers/linear.py
DEBUG 06-26 08:14:01 [backends.py:412] /home/aiscuser/.local/lib/python3.11/site-packages/vllm/model_executor/layers/utils.py
DEBUG 06-26 08:14:01 [backends.py:412] /home/aiscuser/.local/lib/python3.11/site-packages/vllm/model_executor/layers/vocab_parallel_embedding.py
DEBUG 06-26 08:14:01 [backends.py:412] /home/aiscuser/.local/lib/python3.11/site-packages/vllm/model_executor/models/opt.py
DEBUG 06-26 08:14:01 [backends.py:412] /home/aiscuser/.local/lib/python3.11/site-packages/vllm/platforms/interface.py
INFO 06-26 08:14:02 [backends.py:462] Using cache directory: /home/aiscuser/.cache/vllm/torch_compile_cache/1e862139d7/rank_0_0 for vLLM's torch.compile
INFO 06-26 08:14:02 [backends.py:472] Dynamo bytecode transform time: 1.92 s
DEBUG 06-26 08:14:02 [fix_functionalization.py:104] De-functionalized 0 nodes, removed 0 nodes
DEBUG 06-26 08:14:02 [vllm_inductor_pass.py:56] FixFunctionalizationPass completed in 0.2 ms
Traceback (most recent call last):
File "/tmp/output/1341d0e5-e512-4bf9-8cd3-57f8a2dcd890_dffb8f6d/example.py", line 3, in <module>
llm = LLM(model="facebook/opt-125m")
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/aiscuser/.local/lib/python3.11/site-packages/vllm/entrypoints/llm.py", line 243, in __init__
self.llm_engine = LLMEngine.from_engine_args(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/aiscuser/.local/lib/python3.11/site-packages/vllm/engine/llm_engine.py", line 501, in from_engine_args
return engine_cls.from_vllm_config(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/aiscuser/.local/lib/python3.11/site-packages/vllm/v1/engine/llm_engine.py", line 124, in from_vllm_config
return cls(vllm_config=vllm_config,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/aiscuser/.local/lib/python3.11/site-packages/vllm/v1/engine/llm_engine.py", line 101, in __init__
self.engine_core = EngineCoreClient.make_client(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/aiscuser/.local/lib/python3.11/site-packages/vllm/v1/engine/core_client.py", line 75, in make_client
return SyncMPClient(vllm_config, executor_class, log_stats)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/aiscuser/.local/lib/python3.11/site-packages/vllm/v1/engine/core_client.py", line 558, in __init__
super().__init__(
File "/home/aiscuser/.local/lib/python3.11/site-packages/vllm/v1/engine/core_client.py", line 422, in __init__
self._init_engines_direct(vllm_config, local_only,
File "/home/aiscuser/.local/lib/python3.11/site-packages/vllm/v1/engine/core_client.py", line 491, in _init_engines_direct
self._wait_for_engine_startup(handshake_socket, input_address,
File "/home/aiscuser/.local/lib/python3.11/site-packages/vllm/v1/engine/core_client.py", line 511, in _wait_for_engine_startup
wait_for_engine_startup(
File "/home/aiscuser/.local/lib/python3.11/site-packages/vllm/v1/utils.py", line 494, in wait_for_engine_startup
raise RuntimeError("Engine core initialization failed. "
RuntimeError: Engine core initialization failed. See root cause above. Failed core proc(s): {}
The error comes from
Line 489 in 1d7c29f
Here is some output I got by adding some printing before the error:
events: [(35, 4)]
handshake_socket: <zmq.Socket(zmq.ROUTER) at 0x7f825d446890>
From the document of pyzmq: https://github.com/zeromq/pyzmq/blob/a4b9d0d421b7a70c88efb351ce1e2aead0ea0cd3/zmq/sugar/poll.py#L95-L100, it is returning integer fd as the first element in the tuple instead of 0MQ Socket. Have no idea what this means, but this is probably the reason?
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.