Open
Description
Proposal to improve performance
On LoRA models, It's very strange. The performance difference between vllm version 0.8.2 and other versions is extremely significant. With the same input and model, the outputs of vllm 0.8.2 and 0.9.1 are completely different—0.9.1 directly produces garbled output. Based on current testing, 0.8.2 is the most stable and delivers the best results.
Report of performance regression
No response
Misc discussion on performance
No response
Your current environment (if you think it is necessary)
vllm 0.9.1
==============================
System Info
==============================
OS : Ubuntu 22.04.3 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version : Could not collect
CMake version : Could not collect
Libc version : glibc-2.35
==============================
PyTorch Info
==============================
PyTorch version : 2.7.0+cu126
Is debug build : False
CUDA used to build PyTorch : 12.6
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.10.0 | packaged by conda-forge | (default, Nov 20 2021, 02:24:10) [GCC 9.4.0] (64-bit runtime)
Python platform : Linux-5.14.0-587.el9.x86_64-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : Could not collect
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA L20
GPU 1: NVIDIA L20
GPU 2: NVIDIA L20
GPU 3: NVIDIA L20
GPU 4: NVIDIA L20
GPU 5: NVIDIA L20
GPU 6: NVIDIA L20
GPU 7: NVIDIA L20
Nvidia driver version : 550.163.01
cuDNN version : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.6
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
架构: x86_64
CPU 运行模式: 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
字节序: Little Endian
CPU: 128
在线 CPU 列表: 0-127
厂商 ID: GenuineIntel
型号名称: INTEL(R) XEON(R) GOLD 6530
CPU 系列: 6
型号: 207
每个核的线程数: 2
每个座的核数: 32
座: 2
步进: 2
CPU 最大 MHz�� 4000.0000
CPU 最小 MHz: 800.0000
BogoMIPS: 4200.00
标记: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect user_shstk avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req vnmi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr ibt amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
虚拟化: VT-x
L1d 缓存: 3 MiB (64 instances)
L1i 缓存: 2 MiB (64 instances)
L2 缓存: 128 MiB (64 instances)
L3 缓存: 320 MiB (2 instances)
NUMA 节点: 2
NUMA 节点0 CPU: 0-31,64-95
NUMA 节点1 CPU: 32-63,96-127
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-ml-py==12.575.51
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] onnx==1.18.0
[pip3] onnxruntime==1.22.0
[pip3] onnxruntime-gpu==1.22.0
[pip3] pynvml==12.0.0
[pip3] pytorch-crf==0.7.2
[pip3] pyzmq==26.4.0
[pip3] sentence-transformers==4.1.0
[pip3] torch==2.7.0
[pip3] torchaudio==2.7.0
[pip3] torchvision==0.22.0
[pip3] transformers==4.52.4
[pip3] transformers-stream-generator==0.0.5
[pip3] triton==3.3.0
[conda] numpy 2.2.6 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi
[conda] nvidia-cufile-cu12 1.11.1.6 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi
[conda] nvidia-ml-py 12.575.51 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.26.2 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi
[conda] pynvml 12.0.0 pypi_0 pypi
[conda] pytorch-crf 0.7.2 pypi_0 pypi
[conda] pyzmq 26.4.0 pypi_0 pypi
[conda] sentence-transformers 4.1.0 pypi_0 pypi
[conda] torch 2.7.0 pypi_0 pypi
[conda] torchaudio 2.7.0 pypi_0 pypi
[conda] torchvision 0.22.0 pypi_0 pypi
[conda] transformers 4.52.4 pypi_0 pypi
[conda] transformers-stream-generator 0.0.5 pypi_0 pypi
[conda] triton 3.3.0 pypi_0 pypi
==============================
vLLM Info
==============================
ROCM Version : Could not collect
Neuron SDK Version : N/A
vLLM Version : 0.9.1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PIX PXB PXB PXB PXB PXB PXB NODE NODE NODE NODE 0-31,64-95 0 N/A
GPU1 PIX X PXB PXB PXB PXB PXB PXB NODE NODE NODE NODE 0-31,64-95 0 N/A
GPU2 PXB PXB X PXB PXB PXB PXB PXB NODE NODE NODE NODE 0-31,64-95 0 N/A
GPU3 PXB PXB PXB X PXB PXB PXB PXB NODE NODE NODE NODE 0-31,64-95 0 N/A
GPU4 PXB PXB PXB PXB X PXB PXB PXB NODE NODE NODE NODE 0-31,64-95 0 N/A
GPU5 PXB PXB PXB PXB PXB X PXB PXB NODE NODE NODE NODE 0-31,64-95 0 N/A
GPU6 PXB PXB PXB PXB PXB PXB X PIX NODE NODE NODE NODE 0-31,64-95 0 N/A
GPU7 PXB PXB PXB PXB PXB PXB PIX X NODE NODE NODE NODE 0-31,64-95 0 N/A
NIC0 NODE NODE NODE NODE NODE NODE NODE NODE X PIX NODE NODE
NIC1 NODE NODE NODE NODE NODE NODE NODE NODE PIX X NODE NODE
NIC2 NODE NODE NODE NODE NODE NODE NODE NODE NODE NODE X PIX
NIC3 NODE NODE NODE NODE NODE NODE NODE NODE NODE NODE PIX X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
==============================
Environment Variables
==============================
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
vllm 0.8.2
==============================
System Info
==============================
OS : Ubuntu 22.04.3 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version : Could not collect
CMake version : Could not collect
Libc version : glibc-2.35
==============================
PyTorch Info
==============================
PyTorch version : 2.6.0+cu124
Is debug build : False
CUDA used to build PyTorch : 12.4
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.10.18 | packaged by conda-forge | (main, Jun 4 2025, 14:45:41) [GCC 13.3.0] (64-bit runtime)
Python platform : Linux-5.14.0-587.el9.x86_64-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : Could not collect
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA L20
GPU 1: NVIDIA L20
GPU 2: NVIDIA L20
GPU 3: NVIDIA L20
GPU 4: NVIDIA L20
GPU 5: NVIDIA L20
GPU 6: NVIDIA L20
GPU 7: NVIDIA L20
Nvidia driver version : 550.163.01
cuDNN version : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.6
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
架构: x86_64
CPU 运行模式: 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
字节序: Little Endian
CPU: 128
在线 CPU 列表: 0-127
厂商 ID: GenuineIntel
型号名称: INTEL(R) XEON(R) GOLD 6530
CPU 系列: 6
型号: 207
每个核的线程数: 2
每个座的核数: 32
座: 2
步进: 2
CPU 最大 MHz: 4000.0000
CPU 最小 MHz: 800.0000
BogoMIPS: 4200.00
标记: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect user_shstk avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req vnmi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr ibt amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
虚拟化: VT-x
L1d 缓存: 3 MiB (64 instances)
L1i 缓存: 2 MiB (64 instances)
L2 缓存: 128 MiB (64 instances)
L3 缓存: 320 MiB (2 instances)
NUMA 节点: 2
NUMA 节点0 CPU: 0-31,64-95
NUMA 节点1 CPU: 32-63,96-127
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==27.0.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.52.4
[pip3] triton==3.2.0
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
[conda] pyzmq 27.0.0 pypi_0 pypi
[conda] torch 2.6.0 pypi_0 pypi
[conda] torchaudio 2.6.0 pypi_0 pypi
[conda] torchvision 0.21.0 pypi_0 pypi
[conda] transformers 4.52.4 pypi_0 pypi
[conda] triton 3.2.0 pypi_0 pypi
==============================
vLLM Info
==============================
ROCM Version : Could not collect
Neuron SDK Version : N/A
vLLM Version : 0.8.2
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PIX PXB PXB PXB PXB PXB PXB NODE NODE NODE NODE 0-31,64-95 0 N/A
GPU1 PIX X PXB PXB PXB PXB PXB PXB NODE NODE NODE NODE 0-31,64-95 0 N/A
GPU2 PXB PXB X PXB PXB PXB PXB PXB NODE NODE NODE NODE 0-31,64-95 0 N/A
GPU3 PXB PXB PXB X PXB PXB PXB PXB NODE NODE NODE NODE 0-31,64-95 0 N/A
GPU4 PXB PXB PXB PXB X PXB PXB PXB NODE NODE NODE NODE 0-31,64-95 0 N/A
GPU5 PXB PXB PXB PXB PXB X PXB PXB NODE NODE NODE NODE 0-31,64-95 0 N/A
GPU6 PXB PXB PXB PXB PXB PXB X PIX NODE NODE NODE NODE 0-31,64-95 0 N/A
GPU7 PXB PXB PXB PXB PXB PXB PIX X NODE NODE NODE NODE 0-31,64-95 0 N/A
NIC0 NODE NODE NODE NODE NODE NODE NODE NODE X PIX NODE NODE
NIC1 NODE NODE NODE NODE NODE NODE NODE NODE PIX X NODE NODE
NIC2 NODE NODE NODE NODE NODE NODE NODE NODE NODE NODE X PIX
NIC3 NODE NODE NODE NODE NODE NODE NODE NODE NODE NODE PIX X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
==============================
Environment Variables
==============================
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.