Closed
Description
Your current environment
The output of python collect_env.py
Collecting environment information...
uv is set
==============================
System Info
==============================
OS : Ubuntu 24.04.2 LTS (x86_64)
GCC version : (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
Clang version : Could not collect
CMake version : Could not collect
Libc version : glibc-2.39
==============================
PyTorch Info
==============================
PyTorch version : 2.7.0+cu126
Is debug build : False
CUDA used to build PyTorch : 12.6
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.12.10 (main, Apr 9 2025, 04:03:51) [Clang 20.1.0 ] (64-bit runtime)
Python platform : Linux-5.15.0-1030-nvidia-x86_64-with-glibc2.39
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 12.9.41
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA H100 80GB HBM3
GPU 1: NVIDIA H100 80GB HBM3
GPU 2: NVIDIA H100 80GB HBM3
GPU 3: NVIDIA H100 80GB HBM3
GPU 4: NVIDIA H100 80GB HBM3
GPU 5: NVIDIA H100 80GB HBM3
GPU 6: NVIDIA H100 80GB HBM3
GPU 7: NVIDIA H100 80GB HBM3
Nvidia driver version : 535.216.03
cuDNN version : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.10.1
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8462Y+
CPU family: 6
Model: 143
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 2
Stepping: 8
Frequency boost: enabled
CPU(s) scaling MHz: 127%
CPU max MHz: 2801.0000
CPU min MHz: 800.0000
BogoMIPS: 5600.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 3 MiB (64 instances)
L1i cache: 2 MiB (64 instances)
L2 cache: 128 MiB (64 instances)
L3 cache: 120 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-31,64-95
NUMA node1 CPU(s): 32-63,96-127
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] mypy==1.16.0
[pip3] mypy-extensions==1.1.0
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-ml-py==12.575.51
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] nvidia-sphinx-theme==0.0.8
[pip3] pyzmq==26.4.0
[pip3] torch==2.7.0
[pip3] torchaudio==2.7.0
[pip3] torchdata==0.11.0
[pip3] torchvision==0.22.0
[pip3] transformers==4.52.4
[pip3] triton==3.3.0
[conda] Could not collect
==============================
vLLM Info
==============================
ROCM Version : Could not collect
Neuron SDK Version : N/A
vLLM Version : 0.9.1.dev238+g2ffb9b6e0 (git sha: 2ffb9b6e0)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3NIC4 NIC5 NIC6 NIC7 NIC8 NIC9 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 PIX NODE NODE NODENODE NODE SYS SYS SYS SYS 0-31,64-95 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 NODE PIX NODE NODENODE NODE SYS SYS SYS SYS 0-31,64-95 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 NODE NODE PIX NODENODE NODE SYS SYS SYS SYS 0-31,64-95 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 NODE NODE NODE NODENODE PIX SYS SYS SYS SYS 0-31,64-95 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 SYS SYS SYS SYS SYS SYS PIX NODE NODE NODE 32-63,96-127 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 SYS SYS SYS SYS SYS SYS NODE PIX NODE NODE 32-63,96-127 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 SYS SYS SYS SYS SYS SYS NODE NODE PIX NODE 32-63,96-127 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X SYS SYS SYS SYS SYS SYS NODE NODE NODE PIX 32-63,96-127 1 N/A
NIC0 PIX NODE NODE NODE SYS SYS SYS SYS X NODE NODE NODENODE NODE SYS SYS SYS SYS
NIC1 NODE PIX NODE NODE SYS SYS SYS SYS NODE X NODE NODENODE NODE SYS SYS SYS SYS
NIC2 NODE NODE PIX NODE SYS SYS SYS SYS NODE NODE X NODENODE NODE SYS SYS SYS SYS
NIC3 NODE NODE NODE NODE SYS SYS SYS SYS NODE NODE NODE X PIX NODE SYS SYS SYS SYS
NIC4 NODE NODE NODE NODE SYS SYS SYS SYS NODE NODE NODE PIX X NODE SYS SYS SYS SYS
NIC5 NODE NODE NODE PIX SYS SYS SYS SYS NODE NODE NODE NODENODE X SYS SYS SYS SYS
NIC6 SYS SYS SYS SYS PIX NODE NODE NODE SYS SYS SYS SYS SYS SYS X NODE NODE NODE
NIC7 SYS SYS SYS SYS NODE PIX NODE NODE SYS SYS SYS SYS SYS SYS NODE X NODE NODE
NIC8 SYS SYS SYS SYS NODE NODE PIX NODE SYS SYS SYS SYS SYS SYS NODE NODE X NODE
NIC9 SYS SYS SYS SYS NODE NODE NODE PIX SYS SYS SYS SYS SYS SYS NODE NODE NODE X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
NIC8: mlx5_8
NIC9: mlx5_9
==============================
Environment Variables
==============================
CUBLASMP_VERSION=0.4.0.789
CUBLAS_VERSION=12.9.0.13
CUDA_ARCH_LIST=7.5 8.0 8.6 9.0 10.0 12.0
CUDA_DRIVER_VERSION=575.51.03
CUDA_VERSION=12.9.0.043
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
CUDNN_FRONTEND_VERSION=1.11.0
CUDNN_VERSION=9.10.1.4
LD_LIBRARY_PATH=/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NCCL_DEBUG=WARN
NCCL_IB_HCA=^mlx5_3,mlx5_4
NCCL_IB_TIMEOUT=20
NCCL_IGNORE_CPU_AFFINITY=0
NCCL_VERSION=2.26.5
NVIDIA_DRIVER_CAPABILITIES=all
NVIDIA_PRODUCT_NAME=CUDA
NVIDIA_REQUIRE_CUDA=cuda>=9.0
NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=
NVIDIA_VISIBLE_DEVICES=all
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
A few models with mamba layers I've tried don't seem to respect max_model_len
passed into LLM()
from vllm import LLM, SamplingParams
llm = LLM(
#model="facebook/opt-125m", # ok: 20
model="nvidia/Nemotron-H-8B-Base-8K", # bad: 21
#model="meta-llama/Llama-3.1-8B-Instruct", # ok: 20
#model="meta-llama/Meta-Llama-3-8B", # ok: 20
#model="ibm-ai-platform/Bamba-9B-v1", # bad:21
max_model_len=20, # total tokens = prompt + generated
trust_remote_code=True,
)
prompt = "Hello, this is a test prompt."
sampling_params = SamplingParams(max_tokens=20)
outputs = llm.generate([prompt], sampling_params)
for output in outputs:
print(f"Prompt tokens: {len(output.prompt_token_ids)}")
print(f"Generated tokens: {len(output.outputs[0].token_ids)}")
print(f"Total tokens: {len(output.prompt_token_ids) + len(output.outputs[0].token_ids)}")
I expect to see Total tokens: 20
for all of them, but nvidia/Nemotron-H-8B-Base-8K
and ibm-ai-platform/Bamba-9B-v1
both output 21, causing some off-by-one issues in downstream code.
Is this expected?
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.